TAK-779
(Synonyms: Takeda 779) 目录号 : GC37724An antagonist of CCR5, CXCR3, and CCR2b
Cas No.:229005-80-5
Sample solution is provided at 25 µL, 10mM.
TAK-779 is an antagonist of chemokine receptor 5 (CCR5), CCR2b, and CXC chemokine receptor 3 (CXCR3).1,2 It inhibits CCR5 and CXCR3 (IC50s = 236 and 369 nM, respectively, for mouse recombinant receptors expressed in 2B4 T cells) and CCR5 and CCR2b (IC50s = 1.4 and 27 nM, respectively, for human recombinant receptors expressed in CHO cells). TAK-779 inhibits the replication of clinical isolates of R5, but not X4, HIV-1 in human peripheral blood mononuclear cells (PBMCs; EC50s = 1.6-3.5 and >20,000 nM, respectively).1 TAK-779 (250 mg/animal per day) inhibits ovalbumin-induced increases in CCR5, CXCR3, IFN-γ, and TNF-α expression in mouse lung, as well as the number of total cells, lymphocytes, and eosinophils in bronchoalveolar lavage fluid (BALF), in a mouse model of asthma.3 It also increases intestinal allograft survival in a rat model of small intestine transplantation when administered at a dose of 10 mg/kg per day.4
1.Baba, M., Nishimura, O., Kanzaki, N., et al.A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activityProc. Natl. Acad. Sci. USA96(10)5698-5703(1999) 2.Gao, P., Zhou, X.-Y., Yashiro-Ohtani, Y., et al.The unique target specificity of a nonpeptide chemokine receptor antagonist: Selective blockade of two Th1 chemokine receptors CCR5 and CXCR3J. Leukoc. Biol.73(2)273-280(2003) 3.Suzaki, Y., Hamada, K., Nomi, T., et al.A small-molecule compound targeting CCR5 and CXCR3 prevents airway hyperresponsiveness and inflammationEur. J. Respir. J.31(4)783-789(2008) 4.Takama, Y., Miyagawa, S., Yamamoto, A., et al.Effects of a calcineurin inhibitor, FK506, and a CCR5/CXCR3 antagonist, TAK-779, in a rat small intestinal transplantation modelTranspl. Immunol.25(1)49-55(2011)
Cell experiment: | The anti-HIV-1 activities of the test compounds (TAK-779, etc.) are based on the inhibition of virus-induced infectious focus formation in MAGI-CCR5 cells and the reduction of p24 antigen production in PBMCs. In brief, MAGI-CCR5 cells (1 × 104 cells per well) are cultured in a microtiter tray. After a 24-h incubation at 37°C, the culture supernatants are replaced with fresh culture media containing the virus (≈300 focus forming units per well) and various concentrations of the test compounds (TAK-779, etc.). After a 2-day incubation, the cells are fixed and stained with 5-bromo-4-chloro-3-indolyl-β-d-galactosidase. The number of infected (blue) cells is counted microscopically. For the PBMC assays, phytohemagglutinin-stimulated PBMCs (2.5 × 105 cells per 500 μl) are infected with HIV-1 in the presence of various concentrations of the test compounds (TAK-779, etc.). The amounts of the virus used for infection are, depending on the replicability of each strain, generally 1-10 ng of p24 per 2.5 × 105 cells. After an overnight incubation at 37°C, the cells are washed extensively to remove unadsorbed viral particles and are incubated further with culture media containing the same concentrations of the compounds as those used during viral adsorption. On day 6 after viral infection, the culture supernatants are collected and determined for their p24 antigen levels with a sandwich ELISA kit. The cytotoxicities of the compounds are evaluated in parallel with their antiviral activities. They are based on the viability and proliferation of mock-infected cells[1]. |
Animal experiment: | Mice[3]The mice are immunized with MOG and are treated s.c. with TAK-779 or vehicle. The mice (N= 10) are injected s.c. with 150 µg TAK-779 (dissolved in 5% mannitol solution) in a volume of 100 µL, once daily after MOG immunization. TAK-779 injection is started from day 0 after immunization and continued once daily for 22 days. The dose of 150 µg is determined based on the observations in prior experiments that the dose of 50 µg per mouse can not produce inhibition, and a dose of more than 100 µg per mouse is required to produce significant inhibition. The dose of 150 µg per mouse has also been used in other mouse experimental models, and approximately the same dose is used in allograft rejection and asthma models. As a control, an equal volume of PBS containing 5% mannitol is injected daily in the control mice (N= 10)[3]. |
References: [1]. Baba M, et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698-703. |
Cas No. | 229005-80-5 | SDF | |
别名 | Takeda 779 | ||
Canonical SMILES | C[N+](C)(CC1=CC=C(NC(C2=CC3=CC(C4=CC=C(C)C=C4)=CC=C3CCC2)=O)C=C1)C5CCOCC5.[Cl-] | ||
分子式 | C33H39ClN2O2 | 分子量 | 531.13 |
溶解度 | DMSO: ≥ 25 mg/mL (47.07 mM); Water: 16.66 mg/mL (31.37 mM and warming) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8828 mL | 9.4139 mL | 18.8278 mL |
5 mM | 0.3766 mL | 1.8828 mL | 3.7656 mL |
10 mM | 0.1883 mL | 0.9414 mL | 1.8828 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet