Home>>Natural Products>>Theaflavin-3'-gallate

Theaflavin-3'-gallate Sale

(Synonyms: 茶黄素-3'-没食子酸酯) 目录号 : GC37778

A polyphenolic flavonoid with diverse biological activities

Theaflavin-3'-gallate Chemical Structure

Cas No.:28543-07-9

规格 价格 库存 购买数量
1mg
¥702.00
现货
5mg
¥1,782.00
现货
10mg
¥2,970.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Theaflavin-3-gallate is a polyphenolic flavonoid that has been found in black tea (C. sinensis) and has diverse biological activities.1,2,3 It scavenges singlet oxygen and hydrogen peroxide, as well as superoxide and hydroxide radicals (IC50s = 0.86, 0.45, 21.7, and 32.49 ?M, respectively), in cell-free assays.1 Theaflavin-3-gallate is cytotoxic to, and induces apoptosis in, OVCAR-3 and A2780/CP70 ovarian cancer, but not non-cancerous IOSE 364 ovarian epithelial, cells when used at concentrations of 20 and 40 ?M.2 It reduces oxazolone-induced ear edema and serum and ear levels of TNF-α, IFN-γ, and IL-12 in an oxazolone-sensitized mouse model of delayed-type hypersensitivity when administered at a dose of 50 mg/kg.3

1.Wu, Y.-y., Li, W., Xu, Y., et al.Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analysesJ. Zhejiang. Univ. Sci. B.12(9)744-751(2011) 2.Gao, Y., Rankin, G.O., Tu, Y., et al.Inhibitory effects of the four main theaflavin derivatives found in black tea on ovarian cancer cellsAnticancer Res.36(2)643-651(2016) 3.Yoshino, K., Yamazaki, K., and Sano, M.Preventive effects of black tea theaflavins against mouse type IV allergyJ. Sci. Food Agric.90(12)1983-1987(2010)

Chemical Properties

Cas No. 28543-07-9 SDF
别名 茶黄素-3'-没食子酸酯
Canonical SMILES O=C(O[C@H]1[C@@H](C2=C(C=C([C@@H]3[C@H](O)CC4=C(O)C=C(O)C=C4O3)C=C(O)C5=O)C5=C(O)C(O)=C2)OC6=CC(O)=CC(O)=C6C1)C7=CC(O)=C(O)C(O)=C7
分子式 C36H28O16 分子量 716.6
溶解度 DMF: 25 mg/ml,DMF:PBS (pH 7.2) (1:6): 0.1 mg/ml,DMSO: 10 mg/ml,Ethanol: 10 mg/ml 储存条件 -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.3955 mL 6.9774 mL 13.9548 mL
5 mM 0.2791 mL 1.3955 mL 2.791 mL
10 mM 0.1395 mL 0.6977 mL 1.3955 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Theaflavin Chemistry and Its Health Benefits

Oxid Med Cell Longev 2021 Nov 18;2021:6256618.PMID:34804369DOI:10.1155/2021/6256618.

Huge epidemiological and clinical studies have confirmed that black tea is a rich source of health-promoting ingredients, such as catechins and theaflavins (TFs). Furthermore, TF derivatives mainly include theaflavin (TF1), theaflavin-3-gallate (TF2A), Theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3). All of these TFs exhibit extensive usages in pharmaceutics, foods, and traditional medication systems. Various indepth studies reported that how TFs modulates health effects in cellular and molecular mechanisms. The available literature regarding the pharmacological activities of TFs has revealed that TF3 has remarkable anti-inflammatory, antioxidant, anticancer, antiobesity, antiosteoporotic, and antimicrobial properties, thus posing significant effects on human health. The current manuscript summarizes both the chemistry and various pharmacological effects of TFs on human health, lifestyle or aging associated diseases, and populations of gut microbiota. Furthermore, the biological potential of TFs has also been focused to provide a deeper understanding of its mechanism of action.

Theaflavin-3-gallate and Theaflavin-3'-gallate, polyphenols in black tea with prooxidant properties

Basic Clin Pharmacol Toxicol 2008 Jul;103(1):66-74.PMID:18346048DOI:10.1111/j.1742-7843.2008.00232.x.

This study compared the in vitro responses of human gingival fibroblasts and of carcinoma cells derived from the tongue to theaflavin-3-gallate (TF-2A) and Theaflavin-3'-gallate (TF-2B), polyphenols in black tea. The antiproliferative and cytotoxic effects of the theaflavin monomers were more pronounced to the carcinoma, than to the normal, cells. In phosphate buffer at pH 7.4, the theaflavins generated hydrogen peroxide and the superoxide anion, suggesting that their mode of toxicity may be due, in part, to the induction of oxidative stress. In a cell-free assay, TF-2A and TF-2B reacted directly with reduced glutathione (GSH), in a time- and concentration-dependent manner. Intracellular storages of GSH were depleted on treatment of the cells with the theaflavin monomers. Depletion of intracellular GSH was more extensive with TF-2A than with TF-2B and was more pronounced in the carcinoma, than in the normal, cells. The toxicities of the theaflavins were potentiated when the cells were cotreated with the GSH depleter, d,l-buthionine-[S,R]-sulfoximine. In the presence of catalase, pyruvate and divalent cobalt, all scavengers of reactive oxygen species, the cytotoxicities of the theaflavins were lessened. TF-2A and TF-2B induced lipid peroxidation in the carcinoma cells, whereas in the fibroblasts, peroxidation was evident upon exposure to TF-2A, but not to TF-2B. These studies demonstrated that the black tea theaflavin monomers, TF-2A and TF-2B, act as prooxidants and induce oxidative stress, with carcinoma cells more sensitive than normal fibroblasts.

Anti-damage effect of Theaflavin-3'-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis

J Photochem Photobiol B 2021 Nov;224:112304.PMID:34536907DOI:10.1016/j.jphotobiol.2021.112304.

Keratinocytes are rich in lipids and are the main sensitive cells to ultraviolet (UV) rays. Theaflavins are the core functional components of black tea and are known as the "soft gold" in tea. In this study, ultraviolet-B (UVB) irradiation caused apoptosis and necrosis of human epidermal keratinocytes (HaCaT). EGCG and the four theaflavins had anti-UVB damage activity, among which Theaflavin-3'-gallate (TF3'G) had the best activity. The results of biophysical and molecular biology experiments showed that TF3'G has anti-damage effects on UVB-irradiated HaCaT cells through the dual effects of photoprotection and maintenance of cell homeostasis. That is, TF3'G preincubation could absorb UV rays, reduce the accumulation of aging-related heterochromatin (SAHF) formation, increase mitochondrial membrane potential, downregulate NF-κB inflammation pathways, inhibit the formation of cytotoxic aggregates, and protect biological macromolecules Structure, etc. The accumulation of conjugated π bonds and the balance benzoquinone are the core functional structure of TF3'G with high efficiency and low toxicity. The study indicates that TF3'G has the potential to inhibit the photoaging and intrinsic aging of skin cells.

Anti-inflammatory effects of Theaflavin-3'-gallate during influenza virus infection through regulating the TLR4/MAPK/p38 pathway

Eur J Pharmacol 2023 Jan 5;938:175332.PMID:36265612DOI:10.1016/j.ejphar.2022.175332.

Severe pathological damage caused by the influenza virus is one of the leading causes of death. However, the prevention and control strategies for influenza virus infection have certain limitations, and the exploration for new influenza antiviral drugs has become the major research direction. This study evaluated the antiviral activities of four theaflavin derivatives (TFs). Cytopathic effect (CPE) reduction assay revealed that Theaflavin-3'-gallate (TF2b) and theaflavin (TF1) could effectively inhibit the replication of influenza viruses H1N1-UI182, H1N1-PR8, H3N2, and H5N1, and TF2b exhibited the most significant antiviral activity in vivo. Intraperitoneal injection of TF2b at 40 mg/kg/d effectively alleviated viral pneumonia, maintained body weight, and improved the survival rate of mice infected with a lethal dose of H1N1-UI182 to 55.56%. Hematological analysis of peripheral blood further showed that TF2b increased the number of lymphocytes and decreased the number of neutrophils, monocytes, and platelets in the blood of infected mice. RT-qPCR results showed that TF2b reduced the mRNA expression levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β), chemokines (CXCL-2 and CCL-3), and interferons (IFN-α and IFN-γ) after influenza virus infection. In addition, TF2b significantly down-regulated the expression levels of TLR4, p-p38, p-ERK, and cytokines IL-6, TNF-α, IL-1β, and IL-10. These results suggest that TF2b not only significantly inhibits viral replication and proliferation in vitro, but also alleviates pneumonia injury in vivo. Its antiviral effect might be attributed to the down-regulation of influenza virus-induced inflammatory cytokines by regulating the TLR4/MAPK/p38 signaling pathway.

Theaflavin-3,3'-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kappaB in macrophages

Eur J Pharmacol 1999 Feb 19;367(2-3):379-88.PMID:10079014DOI:10.1016/s0014-2999(98)00953-4.

Nitric oxide (NO) plays an important role in inflammation and also in multiple stages of carcinogenesis. We investigated the effects of various tea polyphenols, including theaflavin, a mixture of theaflavin-3-gallate and Theaflavin-3'-gallate, theaflavin-3,3'-digallate, thearubigin, and (-)-epigallocatechin-3-gallate on the induction of NO synthase in lipopolysaccharide-activated murine macrophages, RAW 264.7 cells. Theaflavin-3,3'-digallate was found to be stronger than (-)-epigallocatechin-3-gallate in inhibiting NO generation and inducible NO synthase protein in activated macrophages, while theaflavin, a mixture of theaflavin-3-gallate and Theaflavin-3'-gallate and thearubigin were less effective. Inhibition of NO production was observed when cells were cotreated with theaflavin-3,3'-digallate and lipopolysaccharide. Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) analyses demonstrated that significantly reduced 130-kDa protein and mRNA levels of inducible NO synthase were expressed in lipopolysacchride-activated macrophages with theaflavin-3,3'-digallate, compared to those without theaflavin-3,3'-digallate. Electrophoretic mobility shift assay (EMSA) indicated that theaflavin-3,3'-digallate blocked the activation of nuclear factor kappaB (NF-kappaB), a transcription factor necessary for inducible NO synthase induction. Theaflavin-3,3'-digallate also blocked phosphorylation of IkappaB from cytosolic fraction and reduced lipopolysacchride-induced nuclear accumulation of transcription factor NF-kappaB p65 and p50 subunits. These results suggest that theaflavin-3,3'-digallate decreases the protein levels of inducible NO synthase by reducing the expression of inducible NO synthase mRNA, and the reduction could be via preventing the activation of NF-kappaB, thereby inhibiting the induction of inducible NO synthase transcription. It was also demonstrated that the gallic acid moiety of theaflavin-3,3'-digallate is essential for their potent anti-inflammation activity.