Ursonic acid
(Synonyms: 熊果酮酸; 3-Ketoursolic acid) 目录号 : GC37873Ursonic acid (Prunol, Malol, beta-Ursolic acid, NSC4060, CCRIS 7123, TOS-BB-0966), present in many plants, is a pentacyclic triterpenoid that can be used as a cosmetics additive and serve as a starting material for synthesis of more potent bioactive derivatives, such as experimental antitumor agents. Ursonic acid induces the apoptosis of human cancer cells through multiple signaling pathways.
Cas No.:6246-46-4
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Ursonic acid (Prunol, Malol, beta-Ursolic acid, NSC4060, CCRIS 7123, TOS-BB-0966), present in many plants, is a pentacyclic triterpenoid that can be used as a cosmetics additive and serve as a starting material for synthesis of more potent bioactive derivatives, such as experimental antitumor agents. Ursonic acid induces the apoptosis of human cancer cells through multiple signaling pathways.
[1] Weng H, et al. Cancer Cell Int. 2014, 14(1):96. [2] Gao N, et al. Br J Pharmacol. 2012, 165(6):1813-1826. [3] Colla AR, et al. Eur J Pharmacol. 2015, 758:171-6.
Cas No. | 6246-46-4 | SDF | |
别名 | 熊果酮酸; 3-Ketoursolic acid | ||
Canonical SMILES | CC1(C)C(CC[C@]2(C)[C@@]3([H])CC=C4[C@]5([H])[C@@H](C)[C@H](C)CC[C@@](C(O)=O)5CC[C@](C)4[C@@](C)3CC[C@@]12[H])=O | ||
分子式 | C30H46O3 | 分子量 | 454.68 |
溶解度 | DMSO: 50 mg/mL (109.97 mM; ultrasonic and warming and heat to 80°C); Water: < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.1993 mL | 10.9967 mL | 21.9935 mL |
5 mM | 0.4399 mL | 2.1993 mL | 4.3987 mL |
10 mM | 0.2199 mL | 1.0997 mL | 2.1993 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Therapeutic Potential of Ursonic acid: Comparison with Ursolic Acid
Biomolecules 2020 Nov 2;10(11):1505.PMID:33147723DOI:10.3390/biom10111505.
Plants have been used as drugs to treat human disease for centuries. Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid extracted from certain medicinal herbs such as Ziziphus jujuba. Since the pharmacological effects and associated mechanisms of UNA are not well-known, in this work, we attempt to introduce the therapeutic potential of UNA with a comparison to ursolic acid (ULA), a well-known secondary metabolite, for beneficial effects. UNA has a keto group at the C-3 position, which may provide a critical difference for the varied biological activities between UNA and ULA. Several studies previously showed that UNA exerts pharmaceutical effects similar to, or stronger than, ULA, with UNA significantly decreasing the survival and proliferation of various types of cancer cells. UNA has potential to exert inhibitory effects in parasitic protozoa that cause several tropical diseases. UNA also exerts other potential effects, including antihyperglycemic, anti-inflammatory, antiviral, and antioxidant activities. Of note, a recent study highlighted the suppressive potential of UNA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular modifications of UNA may enhance bioavailability, which is crucial for in vivo and clinical studies. In conclusion, UNA has promising potential to be developed in anticancer and antiprotozoan pharmaceuticals. In-depth investigations may increase the possibility of UNA being developed as a novel reagent for chemotherapy.
Ursonic acid exerts inhibitory effects on matrix metalloproteinases via ERK signaling pathway
Chem Biol Interact 2020 Jan 5;315:108910.PMID:31790661DOI:10.1016/j.cbi.2019.108910.
Ursonic acid is a pentacyclic triterpenoid compound that can be extracted from Ziziphus jujuba Mill., a traditional medicine. Matrix metalloproteinases (MMPs) are involved in cancer metastasis and skin aging. Regulation of various MMPs is closely associated with mitogen-activated protein kinases (MAPKs), including ERK, p38, and JNK MAPKs. In this study, we investigated the possibility of Ursonic acid as an anti-cancer/anti-skin aging agent targeting MMPs. Cytotoxic effects of Ursonic acid were analyzed by cell counting kit-8 (CCK-8) assay. Invasive abilities of ursonic acid-treated A549 and H1299 non-small cell lung cancer (NSCLC) cells were tested with Boyden chamber assay. Effects of Ursonic acid on MMPs were analyzed by zymography assays and quantitative real time polymerase chain reaction (qRT-PCR). We also conducted flow cytometry and western blot analysis to elucidate the mechanisms of MMP regulation by Ursonic acid. Our results revealed that Ursonic acid inhibited transcriptional expression of gelatinases (MMP-2 and MMP-9) via inhibition of ERK and CREB signaling pathways in NSCLC cells. Moreover, Ursonic acid reduced mRNA levels of collagenase (MMP-1) via suppression of ERK and c-Fos signaling pathways in HaCaT keratinocytes. These results suggest that Ursonic acid could be a potential candidate for development of an effective novel anti-cancer and anti-wrinkle agent.
Ursonic acid from Artemisia montana exerts anti-diabetic effects through anti-glycating properties, and by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant C2C12 cells
Chem Biol Interact 2023 May 1;376:110452.PMID:36933777DOI:10.1016/j.cbi.2023.110452.
Artemisia is one of the largest genera in the plant family Asteraceae and has long been used in traditional medicine for its antitussive, analgesic, antihypertensive, antitoxic, antiviral, antimalarial, and anti-inflammatory properties. However, the anti-diabetic activity of Artemisia montana has not been broadly studied. The goal of this study was to determine whether extracts of the aerial parts of A. montana and its main constituents inhibit protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase activities. We isolated nine compounds from A. montana including Ursonic acid (UNA) and ursolic acid (ULA), which significantly inhibited PTP1B with IC50 values of 11.68 and 8.73 μM, respectively. In addition, UNA showed potent inhibitory activity against α-glucosidase (IC50 = 61.85 μM). Kinetic analysis of PTP1B and α-glucosidase inhibition revealed that UNA was a non-competitive inhibitor of both enzymes. Docking simulations of UNA demonstrated negative binding energies and close proximity to residues in the binding pockets of PTP1B and α-glucosidase. Molecular docking simulations between UNA and human serum albumin (HSA) revealed that UNA binds tightly to all three domains of HSA. Furthermore, UNA significantly inhibited fluorescent AGE formation (IC50 = 4.16 μM) in a glucose-fructose-induced HSA glycation model over the course of four weeks. Additionally, we investigated the molecular mechanisms underlying the anti-diabetic effects of UNA in insulin-resistant C2C12 skeletal muscle cells and discovered that UNA significantly increased glucose uptake and decreased PTP1B expression. Further, UNA increased GLUT-4 expression level by activating the IRS-1/PI3K/Akt/GSK-3 signaling pathway. These findings clearly demonstrate that UNA from A. montana shows great potential for treatment of diabetes and its complications.
Ursonic acid inhibits migration and invasion of human osteosarcoma cells through the suppression of mitogen-activated protein kinases and matrix metalloproteinases
Mol Biol Rep 2023 Feb 27.PMID:36848005DOI:10.1007/s11033-023-08333-4.
Introduction: Osteosarcoma (OS) is the most common form of bone malignancy. Although contemporary chemotherapy and surgery have improved the prognosis of those with OS, developing new OS therapies has proven difficult for some time. The activation of the matrix metalloproteinase (MMP) and mitogen-activated protein kinase (MAPK) signaling pathways can induce metastasis, which is an obstacle to OS treatment. Ursonic acid (UNA) is a phytochemical with the potential to cure a variety of human ailments, including cancer. Methods and results: In this study, we investigated the anti-tumor properties of UNA in MG63 cells. We conducted colony formation assay, wound healing assay, and Boyden chamber assays to investigate the anti-OS effects of UNA. UNA was found to significantly inhibit the proliferative, migratory, and invasive abilities of MG63 cells. This bioactivity of UNA was mediated by the inhibition of extracellular signal-regulated kinase (ERK) and p38 and reduction of MMP-2 transcriptional expression as observed in western blot analysis, gelatin zymography and RT-PCR. Anti-OS activities of UNA were also observed in Saos2 and U2OS cells, indicating that its anti-cancer properties are not specific to cell types. Conclusion: Our findings suggest that UNA has the potential for use in anti-metastatic drugs in the treatment of OS.
Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and Ursonic acid
Eur J Med Chem 2020 Jan 1;185:111806.PMID:31677446DOI:10.1016/j.ejmech.2019.111806.
In this work, 35 new derivatives of betulonic, dihydrobetulonic and Ursonic acid were prepared including 30 aminothiazoles and all of them were tested for their in vitro cytotoxic activity in eight cancer cell lines and two non-cancer fibroblasts. Compounds with the IC50 below 5 μM in CCRF-CEM cells and low toxicity in non-cancer fibroblasts (4m, 5c, 5m, 6c, 6m, 7b, and 7c) were further subjected to tests of pharmacological parameters yielding the final set for advanced biological evaluation (4m, 5m, 6m, and 7b). It was proved by several methods, that all of them trigger apoptosis via the intrinsic pathway and derivatives 5m and 7b are the most effective (IC50 2.4 μM and 3.6 μM). They are the best candidates to become potentially new anticancer drugs and will be subjected to in vivo tests in mice. In addition, compounds 6b and 6c deserve more attention because their activity is not limited only to chemosensitive CCRF-CEM cell line. Specifically, compound 6b is highly active against K562 leukemic cell line (0.7 μM) and its IC50 activity in colon cancer HCT116 cell line is 1.0 μM. Compound 6c is active in both normal K562 and resistant K562-TAX cell lines (IC50 3.4 μM and 5.4 μM) and both colon cancer cell lines (HCT116 and HCT116p53-/-, IC50 3.5 μM and 3.4 μM).