Fluorofenidone
(Synonyms: AKF-PD) 目录号 : GC38114Fluorofenidone (AKF-PD),AMR69 的类似物,具有同等的抗纤维化活性,但毒性低,半衰期长。Fluorofenidone (AKF-PD) 部分通过 PI3K/Akt 信号通路抑制 NADPH 氧化酶和细胞外基质 (ECM) 的沉积,从而减轻肾间质纤维化的发生。
Cas No.:848353-85-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Fluorofenidone (AKF-PD), an analogue of AMR69, shows equivalent antifibrotic activity, lower toxicity and longer half-life. Fluorofenidone (AKF-PD) attenuates the progression of renal interstitial fibrosis partly by suppressing NADPH oxidase and extracellular matrix (ECM) deposition via the PI3K/Akt signalling pathway[1][2].
[1]. Qin J, et al. Fluorofenidone inhibits nicotinamide adeninedinucleotide phosphate oxidase via PI3K/Akt pathway in the pathogenesis of renal interstitial fibrosis. Nephrology (Carlton). 2013 Oct;18(10):690-9. [2]. Lou Q, et al. Design, synthesis and antifibrotic activities of carbohydrate-modified 1-(substituted aryl)-5-trifluoromethyl-2(1H) pyridones. Molecules. 2012 Jan 17;17(1):884-96.
Cas No. | 848353-85-5 | SDF | |
别名 | AKF-PD | ||
Canonical SMILES | O=C1C=CC(C)=CN1C2=CC=CC(F)=C2 | ||
分子式 | C12H10FNO | 分子量 | 203.21 |
溶解度 | DMSO: 140 mg/mL (688.94 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 4.921 mL | 24.6051 mL | 49.2102 mL |
5 mM | 0.9842 mL | 4.921 mL | 9.842 mL |
10 mM | 0.4921 mL | 2.4605 mL | 4.921 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Fluorofenidone Inhibits UUO/IRI-Induced Renal Fibrosis by Reducing Mitochondrial Damage
Oxid Med Cell Longev 2022 Mar 20;2022:2453617.PMID:35355864DOI:10.1155/2022/2453617.
Objective: Mitochondrial damage contributes to extracellular matrix (ECM) deposition and renal fibrosis. In this study, we aimed (1) to investigate whether Fluorofenidone (AKF-PD) can attenuate mitochondrial damage in two renal fibrosis models: unilateral ureteral obstruction (UUO) and renal ischemia-reperfusion injury (IRI), and (2) to explore the underlying mechanism. Method: Mitochondrial damage and renal lesions were analyzed in the UUO and IRI models. Mitochondrial energy metabolism, mitochondrial biogenesis, and oxidative stress were measured to assess the effect of AKF-PD on mitochondrial damage and to explore the underlying mechanism. In addition, HK-2 cells were stimulated with TGF-β with and without AKF-PD. The mitochondrial morphology, mtROS, ATP contents, and redox-related proteins were then examined. Results: In both UUO and IRI models, AKF-PD relieved renal fibrosis, maintained mitochondrial structure, and increased mitochondrial DNA copy numbers. The protection was associated with (1) sustaining mitochondrial energy metabolism, evident by elevations of tricarboxylic acid (TCA) cycle enzymes and mitochondrial respiratory chain complexes; (2) improving mitochondrial biogenesis with increases of TFAM, NRF1, PGC-1α, and SIRT1; and (3) reducing mitochondrial oxidative stress likely via regulating SOD2, SIRT3, and NOX4 expressions. In HK-2 cells treated with TGF-β, AKF-PD protected mitochondria along with improving mitochondrial morphology, enhancing ATP production, reducing mtROS, and regulating SOD2, SIRT3, and NOX4 expression. Conclusion: We demonstrate that AKF-PD inhibited renal fibrosis at least in part via protecting mitochondria from damages developed in the UUO and IRI models. The mitochondrial protection was associated with sustaining mitochondrial energy metabolism, improving mitochondrial biogenesis, and reducing mitochondrial oxidative stress. This research verified the protective effect of AKF-PD on mitochondria in the UUO and IRI models and elaborated the underlying mechanism.
Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway
J Cell Mol Med 2016 Nov;20(11):2064-2077.PMID:27306439DOI:10.1111/jcmm.12898.
Interleukin (IL)-1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL-1β is dependent upon caspase-1-containing multiprotein complexes called inflammasomes and IL-1R1/MyD88/NF-κB pathway. In this study, we explored whether a potential anti-fibrotic agent Fluorofenidone (FD) exerts its anti-inflammatory and anti-fibrotic effects through suppressing activation of NACHT, LRR and PYD domains-containing protein 3 (NALP3) inflammasome and the IL-1β/IL-1R1/MyD88/NF-κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α-smooth muscle actin (α-SMA), fibronectin, collagen I, caspase-1, IL-1R1, MyD88 were measured by Western blot and/or RT-PCR. The human actue monocytic leukaemia cell line (THP-1) were incubated with monosodium urate (MSU), with or without FD pre-treatment. The expression of caspase-1, IL-1β, NALP3, apoptosis-associated speck-like protein containing (ASC) and pro-caspase-1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome-associated molecules were measured by Co-immunoprecipitation. RLE-6TN (rat lung epithelial-T-antigen negative) cells were incubated with IL-1β, with or without FD pre-treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL-1β, IL-6, monocyte chemotactic protein-1 (MCP-1), myeloperoxidase (MPO), α-SMA, fibronectin, collagen I, caspase-1, IL-1R1 and MyD88 in mice lung tissues. And FD inhibited MSU-induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome-associated molecules, decreased the level of caspase-1 and IL-1β in THP-1 cells. Besides, FD inhibited IL-1β-induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM-induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL-1β/IL-1R1/MyD88/ NF-κB pathway.
Fluorofenidone inhibits epithelial-mesenchymal transition in human lens epithelial cell line FHL 124: a promising therapeutic strategy against posterior capsular opacification
Arq Bras Oftalmol 2021 May-Jun;84(3):258-266.PMID:33567029DOI:10.5935/0004-2749.20210040.
Purpose: The present study aimed to investigate the inhibitory effect of Fluorofenidone against transforming growth factor β2-induced proliferation and epithelial-mesenchymal transition in human lens epithelial cell line FHL 124 and its potential mechanism. Methods: We evaluated the effect of Fluorofenidone on proliferation and epithelial-mesenchymal transition of human lens epithelial cell line FHL 124 in vitro. After treatment with 0, 0.1, 0.2, 0.4, 0.6, and 1.0 mg/mL Fluorofenidone, cell proliferation was measured via MTT assay. Cell viability was evaluated by lactate dehydrogenase activity from damaged cells. FHL 124 cells were treated with different transforming growth factor β2 concentrations (0-10 ng/mL) for 24 h and the expression of CTGF, α-SMA, COL-I, E-cadherin, and Fn were detected via quantitative polymerase chain reaction and Western blot analysis. After treatment with 0, 0.2, and 0.4 mg/ml Fluorofenidone, the expressions of transforming growth factor β2 and SMADs were detected with real-time polymerase chain reaction and Western blot analysis. Expressions of CTGF, α-SMA, COL-I, and Fn were analyzed by immunocytochemistry assay. Results: The viability of FHL 124 cells was not inhibited when the Fluorofenidone concentration was ≤0.4 mg/mL after the 24h treatment. Cytotoxicity was not detected via lactate dehydrogenase assay after the 24h and 36h treatment with 0.2 and 0.4 mg/mL Fluorofenidone. Transforming growth factor β2 increased mRNA and protein expression of CTGF, α-SMA, COL-I, and Fn. However, Fluorofenidone significantly suppressed expression of SMADs, CTGF, α-SMA, COL-I, and Fn in the absence or presence of transforming growth factor β2 stimulation. Conclusions: Fluorofenidone significantly inhibited expression of SMADs, CTGF, α-SMA, COL-I, and Fn in FHL 124 cells. Due to noncompliance in infants, Fluorofenidone may become a novel therapeutic drug against posterior capsular opacification in infants.
Fluorofenidone protects against acute kidney injury
FASEB J 2019 Dec;33(12):14325-14336.PMID:31661638DOI:10.1096/fj.201901468RR.
Cisplatin (CP) is one of the most effective chemotherapeutics in the treatment of human cancers. However, the beneficial effects of CP are limited by the toxic effects, especially nephrotoxicity. Fluorofenidone (AKFPD) is a promising multifunctional antifibrosis pyridinone drug discovered by our group. But there is no evidence of its protective effects against acute kidney injury (AKI). Therefore, we investigated the protective effects of AKFPD on CP-induced AKI in vivo and in vitro. Compared with the model group, treatment with AKFPD effectively ameliorated kidney damages. In order to elucidate the mechanisms, we discovered that AKFPD treatment notably alleviated generation of reactive oxygen species, reduced the phosphorylation levels of MAPKs (ERK1 and 2, JNKs, and p38), suppressed inflammatory response, inhibited apoptosis, and abated the expression of CP transporters (organic cation transporter 2 and copper transport protein 1) compared with the model group. Moreover, because renal ischemia reperfusion injury (IRI)-induced AKI and LPS-induced AKI are the major models representative of renal transplantation-correlated AKI and sepsis-related AKI, which are also the main causes of AKI, we have also proved the effectiveness of AKFPD on these models. In conclusion, these findings suggest that AKFPD is a potent drug for CP-, IRI-, and LPS-caused AKI and elucidate the underlying mechanism.-Jiang, Y., Quan, J., Chen, Y., Liao, X., Dai, Q., Lu, R., Yu, Y., Hu, G., Li, Q., Meng, J., Xie, Y., Peng, Z., Tao, L. Fluorofenidone protects against acute kidney injury.
Fluorofenidone ATTENUATES PULMONARY INFLAMMATION AND FIBROSIS BY INHIBITING THE IL-11/MEK/ERK SIGNALING PATHWAY
Shock 2022 Aug 1;58(2):137-146.PMID:36166195DOI:10.1097/SHK.0000000000001960.
Idiopathic pulmonary fibrosis is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause. Interleukin (IL)-11 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. In this study, we explore whether a potential antifibrotic agent Fluorofenidone (FD) exerts its anti-inflammatory and antifibrotic effects through suppressing activation of the IL-11/MEK/ERK signaling pathway in vivo and in vitro. Male C57BL/6 J mice were intratracheally injected with bleomycin or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with hemotoxylin and eosin, and Masson trichrome. Cytokines were measured using the enzyme-linked immunosorbent assay. The α-smooth muscle actin (α-SMA), fibronectin, and collagen I were measured using immunohistochemistry, and the phosphorylated extracellular signal-regulated kinase, phosphorylated mitogen-activated protein kinase, IL-11RA, and gp130 were measured using Western blot. The RAW264.7 cells and the normal human lung fibroblasts were treated with IL-11 and/or FD, IL-11RA-siRNA, or MEK inhibitor. The expressions of phosphorylated extracellular signal-regulated kinase, phosphorylated mitogen-activated protein kinase, IL-11RA, gp130, α-SMA, fibronectin, and collagen I were measured using Western blot and/or real-time polymerase chain reaction, and the cytokines were measured using enzyme-linked immunosorbent assay. Results showed that FD markedly reduced the expressions of IL-8, IL-18, IL-11, monocyte chemotactic protein-1, α-SMA, fibronectin, and collagen I in mice lung tissues. In addition, FD attenuated IL-11-induced expressions of α-SMA, fibronectin, and collagen I and inhibited IL-11RA, gp130, and phosphorylation of the ERK and MEK protein expression, as well as reduced the expressions of IL-8, IL-18, and monocyte chemotactic protein-1 in vitro. This study demonstrated that FD attenuated bleomycin-induced pulmonary inflammation and fibrosis in mice by inhibiting the IL-11/MEK/ERK signaling pathway.