Home>>Signaling Pathways>> DNA Damage/DNA Repair>> DNA/RNA Synthesis>>Metarrestin

Metarrestin Sale

(Synonyms: ML246) 目录号 : GC38201

Metarrestin (ML246) is an orally active and specific perinucleolar compartment (PNC) inhibitor that disrupts the nucleolar structure and inhibits RNA polymerase (Pol) I transcription. Metarrestin blocks metastatic development and extends survival in mouse cancer models.

Metarrestin Chemical Structure

Cas No.:1443414-10-5

规格 价格 库存 购买数量
1mg
¥450.00
现货
5mg
¥1,530.00
现货
10mg
¥2,610.00
现货
25mg
¥5,220.00
现货
50mg
¥8,910.00
现货
100mg
¥15,300.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Metarrestin (ML246) is an orally active and specific perinucleolar compartment (PNC) inhibitor that disrupts the nucleolar structure and inhibits RNA polymerase (Pol) I transcription. Metarrestin blocks metastatic development and extends survival in mouse cancer models.

[1] Kevin J Frankowski, et al. Sci Transl Med. 2018 May 16;10(441):eaap8307.

Chemical Properties

Cas No. 1443414-10-5 SDF
别名 ML246
Canonical SMILES O[C@H]1CC[C@H](N(C=NC2=C3C(C4=CC=CC=C4)=C(C5=CC=CC=C5)N2CC6=CC=CC=C6)C3=N)CC1
分子式 C31H30N4O 分子量 474.6
溶解度 DMSO: 31.25 mg/mL (65.84 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.107 mL 10.5352 mL 21.0704 mL
5 mM 0.4214 mL 2.107 mL 4.2141 mL
10 mM 0.2107 mL 1.0535 mL 2.107 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Metabolism and pharmacokinetics characterization of Metarrestin in multiple species

Cancer Chemother Pharmacol 2020 Apr;85(4):805-816.PMID:32185484DOI:10.1007/s00280-020-04042-y.

Purpose: Metarrestin is a first-in-class pyrrolo-pyrimidine-derived small molecule targeting a marker of genome organization associated with metastasis and is currently in preclinical development as an anti-cancer agent. Here, we report the in vitro ADME characteristics and in vivo pharmacokinetic behavior of Metarrestin. Methods: Solubility, permeability, and efflux ratio as well as in vitro metabolism of Metarrestin in hepatocytes, liver microsomes and S9 fractions, recombinant cytochrome P450 (CYP) enzymes, and potential for CYP inhibition were evaluated. Single dose pharmacokinetic profiles after intravenous and oral administration in mice, rat, dog, monkey, and mini-pig were obtained. Simple allometric scaling was applied to predict human pharmacokinetics. Results: Metarrestin had an aqueous solubility of 150 µM at pH 7.4, high permeability in PAMPA and moderate efflux ratio in Caco-2 assays. The compound was metabolically stable in liver microsomes, S9 fractions, and hepatocytes from six species, including human. Metarrestin is a CYP3A4 substrate and, in mini-pigs, is also directly glucuronidated. Metarrestin did not show cytochrome P450 inhibitory activity. Plasma concentration-time profiles showed low to moderate clearance, ranging from 0.6 mL/min/kg in monkeys to 48 mL/min/kg in mice and moderate to high volume of distribution, ranging from 1.5 L/kg in monkeys to 17 L/kg in mice. Metarrestin has greater than 80% oral bioavailability in all species tested. The excretion of unchanged parent drug in urine was < 5% in dogs and < 1% in monkeys over collection periods of ≥ 144 h; in bile-duct cannulated rats, the excretion of unchanged drug was < 1% in urine and < 2% in bile over a collection period of 48 h. Conclusions: Metarrestin is a low clearance compound which has good bioavailability and large biodistribution after oral administration. Biotransformation appears to be the major elimination process for the parent drug. In vitro data suggest a low drug-drug interaction potential on CYP-mediated metabolism. Overall favorable ADME and PK properties support Metarrestin's progression to clinical investigation.

Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis

Sci Transl Med 2018 May 16;10(441):eaap8307.PMID:29769289DOI:10.1126/scitranslmed.aap8307.

Metastasis remains a leading cause of cancer mortality due to the lack of specific inhibitors against this complex process. To identify compounds selectively targeting the metastatic state, we used the perinucleolar compartment (PNC), a complex nuclear structure associated with metastatic behaviors of cancer cells, as a phenotypic marker for a high-content screen of over 140,000 structurally diverse compounds. Metarrestin, obtained through optimization of a screening hit, disassembles PNCs in multiple cancer cell lines, inhibits invasion in vitro, suppresses metastatic development in three mouse models of human cancer, and extends survival of mice in a metastatic pancreatic cancer xenograft model with no organ toxicity or discernable adverse effects. Metarrestin disrupts the nucleolar structure and inhibits RNA polymerase (Pol) I transcription, at least in part by interacting with the translation elongation factor eEF1A2. Thus, Metarrestin represents a potential therapeutic approach for the treatment of metastatic cancer.

Safety assessment of Metarrestin in dogs: A clinical candidate targeting a subnuclear structure unique to metastatic cancer cells

Regul Toxicol Pharmacol 2020 Oct;116:104716.PMID:32619635DOI:10.1016/j.yrtph.2020.104716.

Pancreatic cancer is a leading cause of cancer-related deaths in the U.S. Ninety percent of patients with stage IV pancreatic cancer die within one year of diagnosis due to complications of metastasis. A metastatic potential of cancer cells has been shown to be closely associated with formation of perinucleolar compartment (PNC). Metarrestin, a first-in-class PNC inhibitor, was evaluated for its toxicity, toxicokinetics, and safety pharmacology in beagle dogs following every other day oral (capsule) administration for 28 days to support its introduction into clinical trials. The study consisted of four dose groups: vehicle; 0.25, 0.75 and 1.50 mg/kg/dose. Metarrestin reached its maximum concentration in blood at 3 h (overall median Tmax) across all doses with a mean t1/2 over 168 h of 55.5 h. Dose dependent increase in systemic exposure (Cmax and AUClast) with no sex difference was observed on days 1 and 27. Metarrestin accumulated from Day 1 to Day 27 at all dose levels and in both sexes by an overall factor of about 2.34. No mortality occurred during the dosing period; however, treatment-related clinical signs of toxicity consisting of hypoactivity, shaking/shivering, thinness, irritability, salivation, abnormal gait, tremors, ataxia and intermittent seizure-like activity were seen in both sexes at mid and high dose groups. Treatment-related effects on body weight and food consumption were seen at the mid and high dose levels. Safety pharmacology study showed no treatment-related effects on blood pressure, heart rate, corrected QT, PR, RR, or QRS intervals, or respiratory function parameters (respiratory rate, tidal volume, minute volume). There were no histopathological changes observed, with the exception of transient thymic atrophy which was considered to be non-adverse. Based primarily on clinical signs of toxicity, the No Observed Adverse Effect Level (NOAEL) in dogs was considered to be 0.25 mg/kg Metarrestin after every other day dosing for 28 days with a mean of male and female Cmax = 82.5 ng/mL and AUClast = 2521 h*ng/mL, on Day 27.

Pharmacokinetic evaluation of the PNC disassembler Metarrestin in wild-type and Pdx1-Cre;LSL-KrasG12D/+;Tp53R172H/+ (KPC) mice, a genetically engineered model of pancreatic cancer

Cancer Chemother Pharmacol 2018 Dec;82(6):1067-1080.PMID:30306263DOI:10.1007/s00280-018-3699-0.

Purpose: Metarrestin is a first-in-class small molecule clinical candidate capable of disrupting the perinucleolar compartment, a subnuclear structure unique to metastatic cancer cells. This study aims to define the pharmacokinetic (PK) profile of Metarrestin and the pharmacokinetic/pharmacodynamic relationship of metarrestin-regulated markers. Methods: PK studies included the administration of single or multiple dose of Metarrestin at 3, 10, or 25 mg/kg via intravenous (IV) injection, gavage (PO) or with chow to wild-type C57BL/6 mice and KPC mice bearing autochthonous pancreatic tumors. Metarrestin concentrations were analyzed by UPLC-MS/MS. Pharmacodynamic assays included mRNA expression profiling by RNA-seq and qRT-PCR for KPC mice. Results: Metarrestin had a moderate plasma clearance of 48 mL/min/kg and a large volume of distribution of 17 L/kg at 3 mg/kg IV in C57BL/6 mice. The oral bioavailability after single-dose (SD) treatment was > 80%. In KPC mice treated with SD 25 mg/kg PO, plasma AUC0-∞ of 14400 ng h/mL, Cmax of 810 ng/mL and half-life (t1/2) of 8.5 h were observed. At 24 h after SD of 25 mg/kg PO, the intratumor concentration of Metarrestin was high with a mean value of 6.2 µg/g tissue (or 13 µM), well above the cell-based IC50 of 0.4 µM. At multiple dose (MD) 25 mg/kg/day PO in KPC mice, mean tissue/plasma AUC0-24h ratio for tumor, spleen and liver was 37, 30 and 31, respectively. There was a good linear relationship of dosage to AUC0-24h and C24h. AUC0-24h MD to AUC0-24h SD ratios ranged from two for liver to five for tumor indicating additional accumulation in tumors. Dose-dependent normalization of FOXA1 and FOXO6 mRNA expression was observed in KPC tumors. Conclusions: Metarrestin is an effective therapeutic candidate with a favorable PK profile achieving excellent intratumor tissue levels in a disease with known poor drug delivery.

Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art

Int J Mol Sci 2023 Mar 8;24(6):5184.PMID:36982256DOI:10.3390/ijms24065184.

Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, Metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure-activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.