Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Indole-3-acetamide

Indole-3-acetamide Sale

(Synonyms: 3-吲哚乙酰胺) 目录号 : GC38268

An endogenous metabolite of tryptophan in phytopathogenic bacteria

Indole-3-acetamide Chemical Structure

Cas No.:879-37-8

规格 价格 库存 购买数量
100mg
¥450.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Indole-3-acetamide is an endogenous metabolite of tryptophan and intermediate in the biosynthesis of the major plant, fungal, and bacterial auxin hormone, indole-3-acetic acid , in phytopathogenic bacteria.1 It is formed directly from tryptophan in plants by tryptophan monooxygenase or, indirectly, through indole-3-acetonitrile or indole-3-acetaldoxime intermediates. Exogenous application of indole-3-acetamide (20 ?M) increases the expression of ami1, the gene encoding amidase 1, the enzyme that catalyzes the synthesis of indole-3-acetic acid from indole-3-acetamide, in Arabidopsis.2 It reduces relative primary root elongation in Arabidopsis mutants that have increased amidase activity and lower indole-3-acetamide levels, but not in wild-type Arabidopsis, when used at concentrations of 1 and 10 ?M. Indole-3-acetamide inhibits mouse and rat liver, as well as P. fluorescens and tryptophan 2,3-dioxygenase but not rabbit intestine or mouse epididymis indoleamine 2,3-dioxygenase.3

1.Duca, D., Lorv, J., Patten, C.L., et al.Indole-3-acetic acid in plant-microbe interactionsAnton. Van. Lee. J. M. S.106(1)85-125(2014) 2.Pérez-Alonso, M.-M., Ortiz-García, P., Moya-Cuevas, J., et al.Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in ArabidopsisJ. Exp. Bot.72(2)459-475(2021) 3.Eguchi, N., Watanabe, Y., Kawanishi, K., et al.Inhibition of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase by β-carboline and indole derivativesArch. Biochem. Biophys.232(2)602-609(1984)

Chemical Properties

Cas No. 879-37-8 SDF
别名 3-吲哚乙酰胺
Canonical SMILES C1=CC=CC2=C1C(=C[NH]2)CC(N)=O
分子式 C10H10N2O 分子量 174.2
溶解度 DMSO : 100 mg/mL (574.05 mM; Need ultrasonic); H2O : 1.3 mg/mL (7.46 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.7405 mL 28.7026 mL 57.4053 mL
5 mM 1.1481 mL 5.7405 mL 11.4811 mL
10 mM 0.5741 mL 2.8703 mL 5.7405 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The pathway of auxin biosynthesis in plants

J Exp Bot 2012 May;63(8):2853-72.PMID:22447967DOI:10.1093/jxb/ers091.

The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the Indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.

The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants

J Exp Bot 2010;61(1):25-32.PMID:19887500DOI:10.1093/jxb/erp292.

Novel genes that function in the conversion of Indole-3-acetamide (IAM) into indole-3-acetic acid (IAA), which were previously thought to exist only in the bacterial genome, have been isolated from plants. The finding of the AtAMI1 gene in Arabidopsis thaliana and the NtAMI1 gene in Nicotiana tabacum, which encode Indole-3-acetamide hydrolase, indicates the existence of a new pathway for auxin biosynthesis in plants. This review summarizes the characteristics of these genes involved in auxin biosynthesis and discusses the possibility of the AMI1 gene family being widely distributed in the plant kingdom. Its evolutionary relationship to bacterial Indole-3-acetamide hydrolase, based on phylogenetic analyses, is also discussed.

Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production?

Eur J Cell Biol 2010 Dec;89(12):895-905.PMID:20701997DOI:10.1016/j.ejcb.2010.06.021.

During the course of evolution plants have evolved a complex phytohormone-based network to regulate their growth and development. Herein auxins have a pivotal function, as they are involved in controlling virtually every aspect related to plant growth. Indole-3-acetic acid (IAA) is the major endogenous auxin of higher plants that is already known for more than 80 years. In spite of the long-standing interest in this topic, IAA biosynthesis is still only partially uncovered. Several pathways for the formation of IAA have been proposed over the past years, but none of these pathways are yet completely defined. The aim of this review is to summarize the current knowledge on the Indole-3-acetamide (IAM)-dependent pathway of IAA production in plants and to discuss the properties of the involved proteins and genes, respectively. Their evolutionary relationship to known bacterial IAM hydrolases and other amidases from bacteria, algae, moss, and higher plants is discussed on the basis of phylogenetic analyses. Moreover, we report on the transcriptional regulation of the Arabidopsis AMI1 gene.

Auxin and its role in plant development: structure, signalling, regulation and response mechanisms

Plant Biol (Stuttg) 2021 Nov;23(6):894-904.PMID:34396657DOI:10.1111/plb.13303.

Auxins are plant hormones that play a central role in controlling plant growth and development across different environmental conditions. Even at low concentrations, auxins can regulate gene expression through specific transcription factors and proteins that are modulated to environmental responses in the signalling cascade. Auxins are synthesized in tissues with high cell division activity and distributed by specific transmembrane proteins that regulate efflux and influx. This review presents recent advances in understanding the biosynthetic pathways, both dependent and independent of tryptophan, highlighting the intermediate indole compounds (Indole-3-acetamide, indole-3-acetaldoxime, indole-3-pyruvic acid and tryptamine) and the key enzymes for auxin biosynthesis, such as YUCs and TAAs. In relation to the signalling cascade, it has been shown that auxins influence gene expression regulation by the connection between synthesis and distribution. Moreover, the molecular action of the auxin response factors and auxin/indole-3-acetic acid transcription factors with the F-box TIR1/AFB auxin receptors regulates gene expression. In addition, the importance of microRNAs in the auxin signalling pathway and their influence on plant plasticity to environmental fluctuations is also demonstrated. Finally, this review describes the chemical and biological processes involving auxins in plants.

The Indole-3-Acetamide-Induced Arabidopsis Transcription Factor MYB74 Decreases Plant Growth and Contributes to the Control of Osmotic Stress Responses

Front Plant Sci 2022 Jun 22;13:928386.PMID:35812959DOI:10.3389/fpls.2022.928386.

The accumulation of the auxin precursor Indole-3-acetamide (IAM) in the ami1 mutant has recently been reported to reduce plant growth and to trigger abiotic stress responses in Arabidopsis thaliana. The observed response includes the induction of abscisic acid (ABA) biosynthesis through the promotion of NCED3 expression. The mechanism by which plant growth is limited, however, remained largely unclear. Here, we investigated the transcriptional responses evoked by the exogenous application of IAM using comprehensive RNA-sequencing (RNA-seq) and reverse genetics approaches. The RNA-seq results highlighted the induction of a small number of genes, including the R2R3 MYB transcription factor genes MYB74 and MYB102. The two MYB factors are known to respond to various stress cues and to ABA. Consistent with a role as negative plant growth regulator, conditional MYB74 overexpressor lines showed a considerable growth reduction. RNA-seq analysis of MYB74 mutants indicated an association of MYB74 with responses to osmotic stress, water deprivation, and seed development, which further linked MYB74 with the observed ami1 osmotic stress and seed phenotype. Collectively, our findings point toward a role for MYB74 in plant growth control and in responses to abiotic stress stimuli.