Oxalic acid dihydrate
(Synonyms: 草酸二水合物) 目录号 : GC38274Oxalic acid dihydrate 是一种内源性代谢产物。
Cas No.:6153-56-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Oxalic acid dihydrate is an endogenous metabolite.
Cas No. | 6153-56-6 | SDF | |
别名 | 草酸二水合物 | ||
Canonical SMILES | O=C(O)C(O)=O.O.O | ||
分子式 | C2H6O6 | 分子量 | 126.07 |
溶解度 | DMSO : 100 mg/mL (793.21 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 7.9321 mL | 39.6605 mL | 79.321 mL |
5 mM | 1.5864 mL | 7.9321 mL | 15.8642 mL |
10 mM | 0.7932 mL | 3.9661 mL | 7.9321 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Mechanical properties of anhydrous oxalic acid and Oxalic acid dihydrate
Phys Chem Chem Phys 2019 Jan 30;21(5):2673-2690.PMID:30657500DOI:10.1039/c8cp07188h.
The mechanical properties of Oxalic acid dihydrate and anhydrous oxalic acid (α and β polymorphic forms) were obtained by using rigorous theoretical solid-state methods based on density functional theory using plane waves and pseudopotentials. The calculated crystal structures and X-ray powder diffraction patterns of these materials were found to be in excellent agreement with the experimental information. Since the calculated elasticity matrices fullfilled the Born stability conditions, the corresponding crystal structures were found to be mechanically stable. A large number of relevant mechanical properties including the values of the bulk moduli and their pressure derivatives, shear and Young moduli, Poisson ratios, ductility and hardness indices, and mechanical anisotropy values of these materials were reported. The three forms of oxalic acid are highly anisotropic ductile materials having low hardness and bulk moduli. The three materials are shown to display small negative Poisson ratios (NPR) and to exhibit the phenomenon of negative linear compressibility (NLC) for applied pressures along the direction of the minimum Poisson ratio. In addition, they undergo pressure induced phase transitions for relatively small applied pressures. The analysis of the crystal structures of these materials as a function of pressure demonstrates that the mechanism of NLC of these materials is unrelated to the wine-rack structural mechanism commonly used to rationalize this phenomenon. The three forms of oxalic acid considered in this work are molecular crystals whose structures are characterized by structural elements which are not directly bonded but held together by weak van der Waals forces. The weak bonding between these elements is able to accommodate the structural variations originating from the application of pressure, but the resulting structural deformations appear to be counterintuitive and lead to the anomalous mechanical behavior of these materials.
Effects of Oxalic Acid on Apis mellifera (Hymenoptera: Apidae)
Insects 2017 Aug 7;8(3):84.PMID:28783129DOI:10.3390/insects8030084.
Abstract: Oxalic acid dihydrate is used to treat varroosis of Apis mellifera. This study investigates lethal and sublethal effects of Oxalic acid dihydrate on individually treated honeybees kept in cages under laboratory conditions as well as the distribution in the colony. After oral application, bee mortality occurred at relatively low concentrations (No Observed Adverse Effect Level (NOAEL) 50 µg/bee; Lowest Observed Adverse Effect Level (LOAEL) 75 µg/bee) compared to the dermal treatment (NOAEL 212.5 µg/bee; LOAEL 250 µg/bee). The dosage used in regular treatment via dermal application (circa 175 µg/bee) is below the LOAEL, referring to mortality derived in the laboratory. However, the treatment with Oxalic acid dihydrate caused sublethal effects: This could be demonstrated in an increased responsiveness to water, decreased longevity and a reduction in pH-values in the digestive system and the hemolymph. The shift towards stronger acidity after treatment confirms that damage to the epithelial tissue and organs is likely to be caused by hyperacidity. The distribution of Oxalic acid dihydrate within a colony was shown by macro-computed tomography; it was rapid and consistent. The increased density of the individual bee was continuous for at least 14 days after the treatment indicating the presence of Oxalic acid dihydrate in the hive even long after a treatment.
Effect of waters of crystallization on terahertz spectra: anhydrous oxalic acid and its dihydrate
J Phys Chem A 2010 Jul 8;114(26):7127-38.PMID:20536195DOI:10.1021/jp101935n.
Oxalic acid and Oxalic acid dihydrate were studied using terahertz spectroscopy and solid-state density functional theory (DFT) in the spectral range 10-100 cm(-1). The size of the oxalic acid molecule and its limited internal degrees of freedom make it ideal for evaluating the performance of computational methods for the structural and dynamical simulation of strongly hydrogen-bonded solids. Calculations of the solid-state structures and terahertz spectra of oxalic acid and Oxalic acid dihydrate were performed using the hybrid B3LYP and B3PW91 and the nonhybrid BLYP and PW91 density functionals employing the 6-311G(2d,2p) basis set. When these simulations were compared to the experimental spectra of the oxalic acid solids, a constant overprediction of the dihydrate frequencies was observed in contrast to the results of the anhydrous system. This change in behavior is connected to the nature of the vibrational motions being accessed. The primary molecular motion contributions to the terahertz vibrations of Oxalic acid dihydrate were found to originate in the external motions of the cocrystallized H(2)O molecules. The observed overestimation of the vibrational energies in the simulated terahertz spectra is attributed to increased anharmonicity of the vibrational motions in the dihydrate system versus the anhydrous, resulting from weaker hydrogen bonding through the networked water molecules.
Supramolecular structure of microwave treated bamboo for production of lignin-containing nanocellulose by Oxalic acid dihydrate
Int J Biol Macromol 2023 Mar 1;230:123251.PMID:36639071DOI:10.1016/j.ijbiomac.2023.123251.
Supramolecular structure of cellulosic materials from microwave treatment were throughly investigated for production of lignin-containing nanocellulose. The results revealed that both the intermolecular and intramolecular hydrogen bonds were altered by microwave irradiation. Cellulose Iβ was the main component in microwave treated bamboo (MTB) with smaller interplanar spacing, and the cellulose molecules were loosely connected resulting in a loose structure. Thereafter, MTB was used to produce lignin-containing nanocellulose by using Oxalic acid dihydrate (OAD) to test the feasibility on its efficiency. The chemical consumed for the preparation of lignin-containing nanocellulose (LCN) with a comparable yield (68.08-82.33 %) from MTB was merely 1/10 that from conventional cellulosic materials, indicating the supramolecular structural changes of bamboo cellulose induced by microwave treatment provided suitable conditions for the subsequent hydrolysis of OAD to prepare LCN. The LCN was further added into the polyvinyl alcohol (PVA) matrix endowed excellent UV shielding property and thermal stability for the PVA/LCN films. This study was aimed to provide an environmentally friendly method on the production and application of LCN from bamboo by employing microwave treatment from the perspective of supramolecular level.
Evidence of Polaron Excitations in Low Temperature Raman Spectra of Oxalic acid dihydrate
J Phys Chem A 2016 May 12;120(18):2789-96.PMID:27093217DOI:10.1021/acs.jpca.5b12577.
Low temperature Raman spectra of Oxalic acid dihydrate (8-300 K) for both the polycrystalline and single crystal phase show strong variation with temperature in the interval from 1200 to 2000 cm(-1). Previous low temperature diffraction studies all confirmed the stability of the crystal P21/n phase with no indications of any phase transition, reporting the existence of a strong hydrogen bond between the oxalic acid and a water molecule. A new group of Raman bands in the 1200-1300 cm(-1) interval below 90 K is observed, caused by possible loss of the center of inversion. This in turn could originate either due to disorder in hydroxyl proton positions or due to proton transfer from carboxylic group to water molecule. The hypothesis of proton transfer is further supported by the emergence of new bands centered at 1600 and 1813 cm(-1), which can be explained with vibrations of H3O(+) ions. The broad band at 1600 cm(-1) looses intensity, while the band at 1813 cm(-1) gains intensity on cooling. The agreement between quantum calculations of vibrational spectra and experimentally observed Raman bands of hydronium ions in oxalic acid sesquihydrate crystal corroborates this hypothesis.