Home>>Signaling Pathways>> Others>> Glucosidase>>Cedryl acetate

Cedryl acetate Sale

(Synonyms: 乙酸柏木酯) 目录号 : GC38279

Cedryl Acetate (Cedrol acetate, Cedranyl acetate), an acetylated from cedarwood oil, has been applied to chemistry for its properties as a chiral and cell signaling reagent with antifungal and immunotoxicity functions. Cedryl acetate exhibits α-glucosidase inhibitory activity.

Cedryl acetate Chemical Structure

Cas No.:77-54-3

规格 价格 库存 购买数量
100mg
¥450.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Cedryl Acetate (Cedrol acetate, Cedranyl acetate), an acetylated from cedarwood oil, has been applied to chemistry for its properties as a chiral and cell signaling reagent with antifungal and immunotoxicity functions. Cedryl acetate exhibits α-glucosidase inhibitory activity.

Chemical Properties

Cas No. 77-54-3 SDF
别名 乙酸柏木酯
Canonical SMILES CC1(C)[C@]2([H])[C@](C)(OC(C)=O)CC[C@]3(C2)[C@H](C)CC[C@@]13[H]
分子式 C17H28O2 分子量 264.4
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.7821 mL 18.9107 mL 37.8215 mL
5 mM 0.7564 mL 3.7821 mL 7.5643 mL
10 mM 0.3782 mL 1.8911 mL 3.7821 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Fungal transformation of Cedryl acetate and α-glucosidase inhibition assay, quantum mechanical calculations and molecular docking studies of its metabolites

Eur J Med Chem 2013 Apr;62:764-70.PMID:23455027DOI:10.1016/j.ejmech.2013.01.036.

The fungal transformation of Cedryl acetate (1) was investigated for the first time by using Cunninghamella elegans. The metabolites obtained include, 10β-hydroxycedryl acetate (3), 2α, 10β-dihydroxycedryl acetate (4), 2α-hydroxy-10-oxocedryl acetate (5), 3α,10β-dihydroxycedryl acetate (6), 3α,10α-dihydroxycedryl acetate (7), 10β,14α-dihydroxy Cedryl acetate (8), 3β,10β-cedr-8(15)-ene-3,10-diol (9), and 3α,8β,10β -dihydroxycedrol (10). Compounds 1, 2, and 4 showed α-glucosidase inhibitory activity, whereby 1 was more potent than the standard inhibitor, acarbose, against yeast α-glucosidase. Detailed docking studies were performed on all experimentally active compounds to study the molecular interaction and binding mode in the active site of the modeled yeast α-glucosidase and human intestinal maltase glucoamylase. All active ligands were found to have greater binding affinity with the yeast α-glucosidase as compared to that of human homolog, the intestinal maltase, by an average value of approximately -1.4 kcal/mol, however, no significant difference was observed in the case of pancreatic amylase.

Dietary Supplementation of Cedryl acetate Ameliorates Adiposity and Improves Glucose Homeostasis in High-Fat Diet-Fed Mice

Nutrients 2023 Feb 16;15(4):980.PMID:36839338DOI:10.3390/nu15040980.

Cedryl acetate (CA), also called acetyl cedrene, is approved by the FDA as a flavoring or adjuvant to be added to foods. In this study, we aimed to investigate the preventive benefits of CA on obesity and obesity-related metabolic syndrome caused by a high-fat diet (HFD). Three groups of C57BL/6J mice (ten-week-old) were fed Chow, an HFD, or an HFD with CA supplementation (100 mg/kg) for 19 weeks. We observed that CA supplementation significantly reduced weight gain induced by an HFD, decreased the weight of the visceral fat pads, and prevented adipocyte hypertrophy in mice. Moreover, mice in the CA group showed significant improvements in hepatic lipid accumulation, glucose intolerance, insulin resistance, and gluconeogenesis compared with the mice in the HFD group. Since 16S rRNA analysis revealed that the gut microbiota in the CA and HFD groups were of similar compositions at the phylum and family levels, CA may have limited effects on gut microbiota in HFD-fed mice. The beneficial effects on the metabolic parameters of CA were reflected by CA's regulation of metabolism-related gene expression in the liver (including Pepck, G6Pase, and Fbp1) and the epididymal white adipose tissues (including PPARγ, C/EBPα, FABP4, FAS, Cytc, PGC-1α, PRDM16, Cidea, and COX4) of the mice. In summary, a potent preventive effect of CA on HFD-induced obesity and related metabolic syndrome was highlighted by our results, and CA could be a promising dietary component for obesity intervention.

Oxoiron(v) mediated selective electrochemical oxygenation of unactivated C-H and C[double bond, length as m-dash]C bonds using water as the oxygen source

Chem Sci 2020 Sep 24;11(43):11877-11885.PMID:34094416DOI:10.1039/d0sc03616a.

An efficient electrochemical method for the selective oxidation of C-H bonds of unactivated alkanes (BDE ≤97 kcal mol-1) and C[double bond, length as m-dash]C bonds of alkenes using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes is reported. The O-atom of water remains the source of O-incorporation in the product formed after oxidation. The products formed upon oxidation of C-H bonds display very high regioselectivity (75 : 1, 3° : 2° for adamantane) and stereo-retention (RC ∼99% for cyclohexane derivatives). The substrate scope includes natural products such as Cedryl acetate and ambroxide. For alkenes, epoxides were obtained as the sole product. Mechanistic studies show the involvement of a high-valent oxoiron(v) species, [(bTAML)FeV(O)]- formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- in CPE at 0.80 V (vs. Ag/AgNO3). Moreover, electrokinetic studies for the oxidation of C-H bonds indicate a second-order reaction with the C-H abstraction by oxoiron(v) being the rate-determining step.