Home>>Signaling Pathways>> Others>> NADPH Oxidase>>APX-115

APX-115 Sale

(Synonyms: Ewha-18278) 目录号 : GC38353

APX-115 (Ewha-18278) 是一种有效的,口服活性的,非选择性 Nox 抑制剂,对 Nox1,Nox2 和 Nox4 的 Ki 值分别为 1.08 μM,0.57 μM 和 0.63 μM。APX-115 可有效预防糖尿病小鼠的肾损伤。

APX-115 Chemical Structure

Cas No.:1395946-75-4

规格 价格 库存 购买数量
1mg
¥540.00
现货
5mg
¥1,190.00
现货
10mg
¥2,030.00
现货
25mg
¥3,500.00
现货
50mg
¥6,860.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

APX-115 (Ewha-18278) is a potent, orally active pan NADPH oxidase (Nox) inhibitor with Ki values of 1.08 μM, 0.57 μM, and 0.63 μM for Nox1, Nox2 and Nox4, respectively. APX-115 effectively prevents kidney injury[1].

[1]. Kwon G, et al. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget. 2017 Jun 16;8(43):74217-74232.

Chemical Properties

Cas No. 1395946-75-4 SDF
别名 Ewha-18278
Canonical SMILES OC1=C(CCC)C(C2=CC=CC=C2)=NN1C3=NC=CC=C3.Cl
分子式 C17H18ClN3O 分子量 315.8
溶解度 DMSO: ≥ 250 mg/mL (791.64 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1666 mL 15.8328 mL 31.6656 mL
5 mM 0.6333 mL 3.1666 mL 6.3331 mL
10 mM 0.3167 mL 1.5833 mL 3.1666 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury

Lab Invest 2017 Apr;97(4):419-431.PMID:28165467DOI:10.1038/labinvest.2017.2.

Recent studies have suggested that renal Nox is important in the progression of diabetic nephropathy. Therefore, we investigated the effect of a novel pan-NOX-inhibitor, APX-115, on diabetic nephropathy in type 2 diabetic mice. Eight- week-old db/m and db/db mice were treated with APX-115 for 12 weeks. APX-115 was administered by oral gavage at a dose of 60 mg/kg per day. To compare the effects of APX-115 with a dual Nox1/Nox4 inhibitor, db/db mice were treated with GKT137831 according to the same protocol. APX-115 significantly improved insulin resistance in diabetic mice, similar to GKT137831. Oxidative stress as measured by plasma 8-isoprostane level was decreased in the APX-115 group compared with diabetic controls. All lipid profiles, both in plasma and tissues improved with Nox inhibition. APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. APX-115 decreased urinary albumin excretion and preserved creatinine level. In diabetic kidneys, APX-115 significantly improved mesangial expansion, but GKT137831 did not. In addition, F4/80 infiltration in the adipose tissue and kidney decreased with APX-115 treatment. We also found that TGF-β stimulated ROS generation in primary mouse mesangial cells (pMMCs) from wild-type, Nox1 KO, and Duox1 KO mice, but did not induce Nox activity in pMMCs from Nox2 knockout (KO), Nox4 KO, or Duox2 KO mice. These results indicate that activating Nox2, Nox4, or Duox2 in pMMCs is essential for TGF-β-mediated ROS generation. Our findings suggest that APX-115 may be as effective or may provide better protection than the dual Nox1/Nox4 inhibitor, and pan-Nox inhibition with APX-115 might be a promising therapy for diabetic nephropathy.

APX-115, a pan-NADPH oxidase inhibitor, protects development of diabetic nephropathy in podocyte specific NOX5 transgenic mice

Free Radic Biol Med 2020 Dec;161:92-101.PMID:33011273DOI:10.1016/j.freeradbiomed.2020.09.024.

NADPH oxidases (NOXs) are comprised of different isoforms, NOX1 to 5 and Duox1 and 2, and they trigger diabetic nephropathy (DN) in the patients with diabetes mellitus. Recently, it was shown that, compared to the other isoforms, the expression of NOX5 was increased in the patients with DN and, NOX5 has been suggested to be important in the development of therapeutic agents. The effect of pan-NOX inhibition by APX-115 has also been investigated in type 2 diabetic mice. However, since NOX5 is absent in mice, we evaluated the effect of pan-NOX inhibition by APX-115 in Nox5 transgenic mouse. Wild type and renal podocyte specific NOX5 transgenic mice (NOX5 pod+) were fed with high-fat diet (60% kcal fat) and treated with APX-115 (60 mg/kg) by oral gavage for 14 weeks. APX-115 significantly improved pancreatic beta cell function by decreased fasting blood glucose levels and increased insulin levels. Further, the total serum cholesterol, triglycerides, and urinary albumin/creatinine levels were also significantly decreased by APX-115 treatment. Increased NOX5 mRNA expressions, increased desmin levels, and reduced podocin protein expressions in the kidney of NOX5 pod + mice were also significantly restored to normal levels by APX-115 treatment. Moreover, APX-115 inhibited the expression of inflammation-related proteins such as TRAF6. Collectively, these data suggest that APX-115 might be a promising therapeutic agent for the treatment of DN because of its pan-NOX inhibitory activity, including its NOX5 inhibitory activity, and also owing to its anti-inflammatory effect.

The NADPH Oxidase Family and Its Inhibitors

Antioxid Redox Signal 2020 Aug 10;33(5):332-353.PMID:31826639DOI:10.1089/ars.2019.7915.

Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.

A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis

Oncotarget 2017 Jun 16;8(43):74217-74232.PMID:29088780DOI:10.18632/oncotarget.18540.

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are increasingly recognized as a key factor in inflammation and extracellular matrix accumulation in diabetic kidney disease. APX-115 (3-phenyl-1-(pyridin-2-yl)-4-propyl-1-5-hydroxypyrazol HCl) is a novel orally active pan-Nox inhibitor. The objective of this study was to compare the protective effect of APX-115 with a renin-angiotensin system inhibitor (losartan), the standard treatment against kidney injury in diabetic patients, on streptozotocin (STZ)-induced diabetic kidney injury. Diabetes was induced by intraperitoneal injection of STZ at 50 mg/kg/day for 5 days in C57BL/6J mice. APX-115 (60 mg/kg/day) or losartan (1.5 mg/kg/day) was administered orally to diabetic mice for 12 weeks. APX-115 effectively prevented kidney injury such as albuminuria, glomerular hypertrophy, tubular injury, podocyte injury, fibrosis, and inflammation as well as oxidative stress in diabetic mice, similar to losartan. In addition, both APX-115 and losartan treatment effectively inhibited mitochondrial and peroxisomal dysfunction associated with lipid accumulation. Our data suggest that APX-115, a pan-Nox inhibitor, may become a novel therapeutic agent against diabetic kidney disease by maintaining peroxisomal and mitochondrial fitness.

Inhibition of NADPH Oxidases Prevents the Development of Osteoarthritis

Antioxidants (Basel) 2022 Nov 27;11(12):2346.PMID:36552552DOI:10.3390/antiox11122346.

Increased oxidative stress in osteoarthritis (OA) cartilage mediates catabolic signal transduction leading to extracellular matrix degradation and chondrocyte apoptosis. This study aimed to explore the contribution of NADPH oxidase (NOX), a major source of cellular reactive oxygen species (ROS), to the catabolic process of chondrocytes and to OA. The inhibition of NOX isoforms with a pan-NOX inhibitor, APX-115, significantly decreased IL-1β-induced ROS production in primary chondrocytes and, most potently, suppressed the expression of oxidative stress marker genes and catabolic proteases compared with the inhibition of other ROS sources. Catabolic stimuli by IL-1β treatment and in post-traumatic OA conditions upregulated the expression of NOX2 and NOX4 in chondrocytes. In the post-traumatic OA model, the pharmacologic inhibition of NOX protected mice against OA by modulating the oxidative stress and the expression of MMP-13 and Adamts5 in chondrocytes. Mechanistically, NOX inhibition suppresses Rac1, p38, and JNK MAPK signaling consistently and restores oxidative phosphorylation in IL-1β-treated chondrocytes. In conclusion, NOX inhibition prevented the development of OA by attenuating the catabolic signaling and restoring the mitochondrial metabolism and can thus be a promising class of drug for OA.