Home>>Signaling Pathways>> DNA Damage/DNA Repair>> Topoisomerase>>Groenlandicine

Groenlandicine Sale

(Synonyms: 格兰地新) 目录号 : GC38511

Groenlandicine 是从黄连中分离得到的一种原小檗碱生物碱。Groenlandicine 对人类重组醛糖还原酶 (HRAR) 具有中度的抑制作用,IC50 值为 154.2 μM。Groenlandicine 能诱导拓扑异构酶 I (topoisomerase I) 介导的 DNA 裂解。

Groenlandicine Chemical Structure

Cas No.:38691-95-1

规格 价格 库存 购买数量
1mg
¥1,710.00
现货
5mg
¥5,139.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Groenlandicine is a protoberberine alkaloid isolated from Coptidis Rhizoma. Groenlandicine exhibits moderate inhibitory effect with IC50 value of 154.2 μM for human recombinant aldose reductase (HRAR)[1]. Groenlandicine selectively induces topoisomerase I-mediated DNA cleavage[2].

[1]. Jung HA, et al. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch Pharm Res. 2008 Nov;31(11):1405-12. [2]. Kobayashi Y, et al. Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes. Planta Med. 1995 Oct;61(5):414-8.

Chemical Properties

Cas No. 38691-95-1 SDF
别名 格兰地新
Canonical SMILES COC1=CC2=C(C=C1O)CC[N+]3=CC4=C(C=CC5=C4OCO5)C=C23
分子式 C19H16NO4+ 分子量 322.33
溶解度 DMSO : 1 mg/mL (3.10 mM; ultrasonic and warming and heat to 60°C) 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1024 mL 15.5121 mL 31.0241 mL
5 mM 0.6205 mL 3.1024 mL 6.2048 mL
10 mM 0.3102 mL 1.5512 mL 3.1024 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

[Research of preparation quality markers of Yulian Tang with anti-inflammatory activity]

Zhongguo Zhong Yao Za Zhi 2022 Jun;47(11):2947-2954.PMID:35718516DOI:10.19540/j.cnki.cjcmm.20220118.301.

The lipopolysaccharide(LPS)-indused RAW264.7 cells inflammation model was used as a carrier to investigated the effects of the preparation quality markers of Yulian Tang with anti-inflammatory activity in vitro. RAW264.7 cells were treated with LPS(50 ng·mL~(-1)) or/and different concentrations(low dose 0.1 μmol·L~(-1); medium dose 1 μmol·L~(-1); high dose 10 μmol·L~(-1)) of 18 chemical components in Yulian Tang for 24 h. Then the activity of RAW264.7 cell was detected using Cell Counting Kit-8(CCK-8) and the concentrations of inflammatory factors TNF-α and IL-6 in the supernatant of RAW264.7 cell were detected by ELISA assay. As the concentrations of chemical components in Yulian Tang increased, berberine, coptisine, magnoflorine, epiberberine, columbamine and costunolide had stronger inhibitory effects on TNF-α, whereas limonin, dehydroevodiamine, chlorogenic acid, neochlorogenic acid, Groenlandicine, evodiamine, rutaecarpine and phellodendrine showed weakened inhibitory effects on TNF-α. The concentrations of palmatine, jatrorrhizine, dehydrocostus lactone and cryptochlorogenic acid had no significant effect on their inhibitory effect on TNF-α. Furthermore, dehydrorutaecarpine, chlorogenic acid, neochlorogenic acid, evodiamine, rutaecarpine, costunolide, phellodendrine and cryptochlorogenic acid showed stronger inhibitory effect on IL-6 as their concentrations increased; berberine, coptisine, magnoflorine, epiberberine, limonin, columbamine, Groenlandicine and dehydrocostus lactone had no changes in their inhibitory effects on IL-6 as the concentrations increased. Palmatine and jatrorrhizine had the best inhibitory effect on IL-6. Combining the previous analysis of qualitative and quantitative preparation quality markers of Yulian Tang with the above result of dose-response relationship, we finally identified 15 preparation quality markers of Yulian Tang with anti-inflammatory activity, namely berberine, coptisine, palmatine, magnoflorine, epiberberine, limonin, columbamine, jatrorrhizine, neochlorogenic acid, chlorogenic acid, Groenlandicine, evodiamine, rutaecarpine, dehydrocostus lactone and costunolide. In conclusion, our study provides a quick strategy for screening the qualitative preparation quality markers of Yulian Tang with anti-inflammatory activity. Moreover, it also provides an explicit route for the determination of preparation quality markers of Yulian Tang with other activities.

Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids

Biol Pharm Bull 2009 Aug;32(8):1433-8.PMID:19652386DOI:10.1248/bpb.32.1433.

Coptidis Rhizoma and its isolated alkaloids are reported to possess a variety of activities, including neuroprotective and antioxidant effects. Thus, the anti-Alzheimer and antioxidant effects of six protoberberine alkaloids (berberine, palmatine, jateorrhizine, epiberberine, coptisine, and Groenlandicine) and one aporphine alkaloid (magnoflorine) from Coptidis Rhizoma were evaluated via beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) assays, along with peroxynitrite (ONOO(-)) scavenging and total reactive oxygen species (ROS) inhibitory assays. Six protoberberine alkaloids exhibited predominant cholinesterases (ChEs) inhibitory effects with IC(50) values ranging between 0.44-1.07 microM for AChE and 3.32-6.84 microM for BChE; only epiberberine (K(i)=10.0) and Groenlandicine (K(i)=21.2) exerted good, non-competitive BACE1 inhibitory activities with IC(50) values of 8.55 and 19.68 microM, respectively. In two antioxidant assays, jateorrhizine and Groenlandicine exhibited significant ONOO(-) scavenging activities with IC(50) values of 0.78 and 0.84 microM, respectively; coptisine and Groenlandicine exhibited moderate total ROS inhibitory activities with IC(50) values of 48.93 and 51.78 microM, respectively. These results indicate that Coptidis Rhizoma alkaloids have a strong potential of inhibition and prevention of Alzheimer's disease (AD) mainly through both ChEs and beta-amyloids pathways, and additionally through antioxidant capacities. In particular, Groenlandicine may be a promising anti-AD agent due to its potent inhibitory activity of both ChEs and beta-amyloids formation, as well as marked ONOO(-) scavenging and good ROS inhibitory capacities. As a result, Coptidis Rhizoma and the alkaloids contained therein would clearly have beneficial uses in the development of therapeutic and preventive agents for AD and oxidative stress-related disease.

Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells

Fitoterapia 2012 Jan;83(1):67-73.PMID:21968062DOI:10.1016/j.fitote.2011.09.014.

Generally, berberine, coptisine, palmatine, and jatrorrhizine were considered as the main bio-active compounds in Rhizoma Coptis (RC). Little attention was paid to investigate the pharmacological activity of minor constituents in RC. The present study was designed to separate the minor compounds, and the cytotoxicity and antihyperglycemic effect of these compounds in HepG2 cells were also studied. Palmatine (1), berberine (2), coptisine (3), epiberberine (4), columbamine (5), and jatrorrhizine (6) from RC ethanol extract were isolated by high speed counter current chromatography (HSCCC) in one run. The remaining fraction (about 50% of extract in HSCCC) was further isolated by traditional column chromatography methods to yield magnoflorine (7), ferulic acid (8), and choline (9). Another four alkaloids, namely Groenlandicine (10), berberrubine (11), oxyberberine (12), 8-oxo-coptisine (13), also were obtained from CHCl(3) extracts. Especially, choline was first isolated from RC. Cell assay indicated that the minor fractions excluding compounds 1-6 showed obvious glucose lowering activity. In addition, the minor monomers also exhibited moderate glucose lowering activity. The combination of berberine and ferulic acid showed synergistic effect on antihyperglycemic. The combination of alkaloids 1-6 was same so. All compounds had different cytotoxicity in HepG2 cells within the test concentration. Of them, berberrubine showed the strongest cytotoxicity. The results suggested that combined action of variety constituents contributed to the antihyperglycemic effects and low cytotoxicity of RC extract in HepG2 cells.

Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells

J Pharm Pharmacol 2005 Mar;57(3):367-74.PMID:15807993DOI:10.1211/0022357055470.

A study was conducted to elucidate and compare the protective activity of alkaloids from Coptidis Rhizoma (berberine, coptisine, palmatine, epiberberine, jatrorhizine, Groenlandicine and magnoflorine) using an LLC-PK(1) cell under peroxynitrite (ONOO(-)) generation model. Treatment with 3-morpholinosydnonimine (SIN-1) led to an increase in cellular ONOO(-) generation in comparison with non-treated cells. However, Coptidis Rhizoma extract and its alkaloids, except for berberine, reduced the cellular ONOO(-) level. In addition, DNA fragmentation induced by SIN-1 was significantly decreased by the extract, and also by coptisine, epiberberine, jatrorhizine, Groenlandicine and magnoflorine. Moreover, treatment with berberine, coptisine, palmatine and epiberberine exerted a protective effect against G(0)/G(1)phase arrest of cell cycle induced by SIN-1. The increase in cellular ONOO(-) generation, DNA damage and disturbance of the cell cycle by SIN-1 resulted in a decrease in cell viability. However, Coptidis Rhizoma extract, epiberberine, jatrorhizine, Groenlandicine and magnoflorine significantly increased cell viability even at a concentration as low as 10 microg mL(-1). These findings demonstrate that Coptidis Rhizoma extract and its alkaloids can ameliorate the cell damage associated with ONOO(-) generation in renal tubular LLCPK(1) cells, and that the various alkaloids have distinctive mechanisms of action, such as ONOO(-) scavenging, protection from DNA damage and control of the cell cycle. Furthermore, the data suggest that among the Coptidis Rhizoma alkaloids, coptisine is the most effective for protection against SIN-1-induced cellular injury in terms of its potency and content.

Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase

Arch Pharm Res 2008 Nov;31(11):1405-12.PMID:19023536DOI:10.1007/s12272-001-2124-z.

As part of our ongoing search of natural sources for therapeutic and preventive agents for diabetic complications, the rat lens aldose reductase (RLAR) inhibitory effect of Coptidis Rhizoma (the rhizome of Coptis chinensis Franch) was evaluated. Its extract and fractions exhibited broad and moderate RLAR inhibitory activities of 38.9 approximately 67.5 microg/mL. In an attempt to identify bioactive components, six quaternary protoberberine-type alkaloids (berberine, palmatine, jateorrhizine, epiberberine, coptisine, and Groenlandicine) and one quaternary aporphine-type alkaloid (magnoflorine) were isolated from the most active n-BuOH fraction, and the chemical structures therein were elucidated on the basis of spectroscopic evidence and comparison with published data. The anti-diabetic complications capacities of seven C. chinensis-derived alkaloids were evaluated via RLAR and human recombinant AR (HRAR) inhibitory assays. Although berberine and palmatine were previously reported as prime contributors to AR inhibition, these two major components exhibited no AR inhibitory effects at a higher concentration of 50 microg/ml in the present study. Conversely, epiberberine, coptisine, and Groenlandicine exhibited moderate inhibitory effects with IC(50) values of 100.1, 118.4, 140.1 microM for RLAR and 168.1, 187.3, 154.2 microM for HRAR. The results clearly indicated that the presence of the dioxymethylene group in the D ring and the oxidized form of the dioxymethylene group in the A ring were partly responsible for the AR inhibitory activities of protoberberine-type alkaloids. Therefore, Coptidis Rhizoma, and the alkaloids contained therein, would clearly have beneficial uses in the development of therapeutic and preventive agents for diabetic complications and diabetes mellitus.