Dihydrocurcumin
(Synonyms: 二氢姜黄素) 目录号 : GC38535Dihydrocurcumin 是姜黄素的主要代谢物,可以减少脂质堆积和氧化应激。Dihydrocurcumin 可调节 SREBP-1C,PNPLA3 和 PPARα 的 mRNA 和蛋白水平,增加 pAKT 和 PI3K 的蛋白表达水平,通过 Nrf2 信号通路减少细胞胞内 NO 和 ROS 的含量。
Cas No.:76474-56-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Dihydrocurcumin, a major metabolites of curcumin, reduces lipid accumulation and oxidative stress. Dihydrocurcumin regulates mRNA and protein expression levels of SREBP-1C, PNPLA3 and PPARα, increases protein expression levels of pAKT and PI3K, and reduced the levels of cellular NO and ROS via Nrf2 signaling pathways[1].
[1]. Yu Q, et al. Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells. Biomed Pharmacother. 2018 Jul;103:1327-1336.
Cas No. | 76474-56-1 | SDF | |
别名 | 二氢姜黄素 | ||
Canonical SMILES | O=C(/C=C(O)/C=C/C1=CC=C(O)C(OC)=C1)CCC2=CC=C(O)C(OC)=C2 | ||
分子式 | C21H22O6 | 分子量 | 370.4 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6998 mL | 13.4989 mL | 26.9978 mL |
5 mM | 0.54 mL | 2.6998 mL | 5.3996 mL |
10 mM | 0.27 mL | 1.3499 mL | 2.6998 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells
Biomed Pharmacother 2018 Jul;103:1327-1336.PMID:29864915DOI:10.1016/j.biopha.2018.04.143.
Aims: Curcumin is a polyphenol compound with many pharmacological activities including antioxidant, lipid-loweing and liver protective. Dihydrocurcumin (DHC) is one of the major metabolites of curcumin. So far, the pharmacological activity of DHC has not been reported. Here, we evaluate the effects of DHC on oleic acid (OA)-induced lipid accumulation, oxidative stress and insulin resistance and the underlying mechanism in L02 and HepG2 cells. Main methods: OA-induced L02 and HepG2 cells were used as the in vitro model of nonalcoholic fatty liver disease (NAFLD). Lipid accumulation, oxidative stress, glucose uptake and cell inflammation were evaluated by cellular biochemical assay, respectively. Signaling pathways involved in lipid metabolism including peroxisome proliferator activated receptor-α (PPARα), the sterol regulatory element binding protein-1C (SREBP-1C) and patatin-like phospholipase domain containing 3 (PNPLA3), glucose uptake including phosphatidylinositol 3-kinase (PI3K) and phosphorylated serine-threonine protein kinase (pAKT), and oxidative stress including nuclear factor E2-related factor 2 (Nrf2), cytochrome P450 4A (CYP4A) and 2E1 (CYP2E1) were investigated by western blotting and RT-qPCR, respectively. Key findings: DHC decreased the levels of cellular triglycerides (TG) by regulating the mRNA and protein expression levels of SREBP-1C, PNPLA3 and PPARα. At the same time, DHC improved the hepatocellular glucose uptake by increasing the protein expression levels of pAKT and PI3K. Furthermore, DHC reduced the levels of cellular NO and ROS via Nrf2 signaling pathways. Significance: The present study firstly revealed that DHC ameliorated OA-induced steatosis through regulating the lipid metabolism, oxidative stress and insulin resistance in HepG2 and L02 cells.
Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin
Arch Pharm Res 2004 Jul;27(7):683-92.PMID:15356994DOI:10.1007/BF02980135.
Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C (PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and IkappaB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)kappaB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction pathways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins play a pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to Dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.
Mechanisms of cancer chemoprevention by curcumin
Proc Natl Sci Counc Repub China B 2001 Apr;25(2):59-66.PMID:11370761doi
Curcumin is a major component of the Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animals as indicated by its ability to block colon tumor initiation by azoxymethane and skin tumor promotion induced by phorbol ester TPA. Recently, curcumin has been considered by oncologists as a potential third generation cancer chemopreventive agent, and clinical trials using it have been carried out in several laboratories. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes, such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase. Curcumin is also a potent inhibitor of protein kinase C, EGF-receptor tyrosine kinase and IkappaB kinase. In addition, curcumin inhibits the activation of NFkappaB and the expression of c-jun, c-fos, c-myc and iNOS. It is proposed that curcumin may suppress tumor promotion by blocking signal transduction pathways in the target cells. Curcumin was first biotransformed to Dihydrocurcumin and tetrahydrocurcumin, and these compounds were subsequently convened into monoglucuronide conjugates. The experimental results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are major metabolites of curcumin in mice.
Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism
Proc Natl Acad Sci U S A 2011 Apr 19;108(16):6615-20.PMID:21467222DOI:10.1073/pnas.1016217108.
Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli was able to act on curcumin. The curcumin-converting enzyme was purified from E. coli and characterized. The native enzyme had a molecular mass of about 82 kDa and consisted of two identical subunits. The enzyme has a narrow substrate spectrum, preferentially acting on curcumin. The microbial metabolism of curcumin by the purified enzyme was found to comprise a two-step reduction, curcumin being converted NADPH-dependently into an intermediate product, Dihydrocurcumin, and then the end product, tetrahydrocurcumin. We named this enzyme "NADPH-dependent curcumin/Dihydrocurcumin reductase" (CurA). The gene (curA) encoding this enzyme was also identified. A homology search with the BLAST program revealed that a unique enzyme involved in curcumin metabolism belongs to the medium-chain dehydrogenase/reductase superfamily.
Recent studies on the biofunctions and biotransformations of curcumin
Biofactors 2000;13(1-4):153-8.PMID:11237176DOI:10.1002/biof.5520130125.
Curcumin is a major component of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animals as indicated by its ability to block colon tumor initiation by azoxymethane and skin tumor promotion induced by phorbol ester TPA. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase. Curcumin is also a potent inhibitor of protein kinase C, EGF-receptor tyrosine kinase and IkappaB kinase. Subsequently, curcumin inhibits the activation of NFkappaB and the expressions of c-jun, c-fos, c-myc and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction pathways in the target cells. Curcumin was first biotransformed to Dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydro-curcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are major metabolites of curcumin in mice.