GDC-0339
目录号 : GC32958GDC-0339是Pim激酶抑制剂,作用于BaF3PIM1时,IC50为43.6nM。
Cas No.:1428569-85-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
GDC-0339 is a Pim kinase inhibitor with IC50 of 43.6 nM for BaF3 PIM1.IC50 value: 43.6 nM (for BaF3 PIM1), 0.04 nM (Ki, for PIM1 LC-3K)Target: Pim
Cas No. | 1428569-85-0 | SDF | |
Canonical SMILES | FC1=CC=CC(F)=C1C2=NC(C(NC3=C(N4CC[C@@H](F)[C@H](N)CC4)N(C)N=C3)=O)=C(N)S2 | ||
分子式 | C20H22F3N7OS | 分子量 | 465.5 |
溶解度 | DMSO : ≥ 52 mg/mL (111.71 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.1482 mL | 10.7411 mL | 21.4823 mL |
5 mM | 0.4296 mL | 2.1482 mL | 4.2965 mL |
10 mM | 0.2148 mL | 1.0741 mL | 2.1482 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
CYP1A1-Mediated Intramolecular Rearrangement of Aminoazepane in GDC-0339
Drug Metab Dispos 2017 Oct;45(10):1084-1092.PMID:28790146DOI:10.1124/dmd.117.076786.
GDC-0339 is a novel small molecule pan-Pim kinase inhibitor that was discovered as a potential treatment of multiple myeloma. During the in vitro and in vivo metabolite profiling of GDC-0339, a metabolite was detected that had the same elemental composition as the parent but was distinct with respect to its chromatographic separation and mass spectrometric fragmentation pattern. High resolution tandem mass spectrometry data indicated the metabolite was modified at the aminoazepane moiety. The structure was solved by nuclear magnetic resonance analysis of the isolated metabolite and further confirmed by comparing it to a synthetic standard. These results indicated that the metabolite was formed by an intramolecular amine replacement reaction with the primary amine forming a new attachment to pyrazole without any change in stereochemistry. In vitro experiments showed cytochrome P450s catalyzed the reaction and demonstrated high isoform selectivity by CYP1A1. Results from kinetic experiments showed that the CYP1A1-mediated rearrangement of GDC-0339 was an efficient reaction with apparent turnover number (kcat) and Michaelis constant (Km) of 8.4 minutes-1 and 0.6 μM, respectively. The binding of GDC-0339 to the cytochrome P450 active site was examined by characterizing the direct inhibition of CYP1A1-mediated phenacetin O-deethylation, and GDC-0339 was a potent competitive inhibitor with Ki of 0.9 μM. This high affinity binding was unexpected given a narrow active site for CYP1A1 and GDC-0339 does not conform structurally to known CYP1A1 substrates, which are mostly polyaromatic planar molecules. Further, we explored some of the structural requirements for the rearrangement reaction and identified several analogs to GDC-0339 that undergo this biotransformation.
Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma
J Med Chem 2019 Feb 28;62(4):2140-2153.PMID:30715878DOI:10.1021/acs.jmedchem.8b01857.
Pim kinases have been targets of interest for a number of therapeutic areas. Evidence of durable single-agent efficacy in human clinical trials validated Pim kinase inhibition as a promising therapeutic approach for multiple myeloma patients. Here, we report the compound optimization leading to GDC-0339 (16), a potent, orally bioavailable, and well tolerated pan-Pim kinase inhibitor that proved efficacious in RPMI8226 and MM.1S human multiple myeloma xenograft mouse models and has been evaluated as an early development candidate.
Human Cytochrome P450 1A1 Adapts Active Site for Atypical Nonplanar Substrate
Drug Metab Dispos 2020 Feb;48(2):86-92.PMID:31757797DOI:10.1124/dmd.119.089607.
The human cytochrome P450 1A1 (CYP1A1) is well known for chemical activation of procarcinogens and often has a substrate scope of small and highly planar compounds. Substrates deviating from these characteristics are certainly known, but how these larger and nonplanar substrates are accommodated and oriented within the CYP1A1 active site is not understood. Herein a new X-ray structure of CYP1A1 bound to the pan-Pim kinase inhibitor GDC-0339 reveals how the CYP1A1 active site cavity is reconfigured to bind larger and nonplanar compounds. The shape and size of the cavity are controlled by structural elements in the active site roof, with major changes in the conformation of the F helix break and relocation of Phe224 from the active site to the protein surface. This altered CYP1A1 active site architecture is consistent with the proposed mechanism for CYP1A1 generation of an unusual aminoazepane-rearranged metabolite for this substrate. SIGNIFICANCE STATEMENT: Cytochrome P450 1A1 metabolizes drugs, procarcinogens, and toxins and although previous structures have revealed how its stereotypical planar, aromatic compounds are accommodated in the CYP1A1 active site, this is not the case for flexible and nonplanar compounds. The current work determines the X-ray structure of CYP1A1 with such a flexible, nonplanar Pim kinase inhibitor, revealing significant modification of the CYP1A1 roof that accommodate this preclinical candidate and support an unusual intramolecular rearrangement reaction.