Ginsenoside F5
(Synonyms: 人参皂苷F5) 目录号 : GC60173GinsenosideF5,可从Panaxginseng中提物,通过凋亡(apoptosis)途径显着抑制HL-60细胞生长。
Cas No.:189513-26-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Ginsenoside F5, from crude extracts of flower buds of Panax ginseng, remarkably inhibits the growth of HL-60 cells by the apoptosis pathway[1].
[1]. Ke-Ke Li, et al. Isolation, Purification and Quantification of Ginsenoside F? and F? Isomeric Compounds From Crude Extracts of Flower Buds of Panax Ginseng. Molecules. 2016 Mar 9;21(3):315.
Cas No. | 189513-26-6 | SDF | |
别名 | 人参皂苷F5 | ||
Canonical SMILES | C[C@@]([C@@]([C@@]1([H])[C@@]2([H])[C@@](CC/C=C(C)/C)(C)O[C@@H]([C@@H]([C@H]3O)O)O[C@@H]([C@H]3O)CO[C@@H]([C@@H]([C@H]4O)O)O[C@H]4CO)(CC2)C)(C[C@@H]5O)[C@@](C[C@H]1O)([H])[C@]([C@]5([H])C6(C)C)(CC[C@@H]6O)C | ||
分子式 | C41H70O13 | 分子量 | 770.99 |
溶解度 | 储存条件 | ||
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.297 mL | 6.4852 mL | 12.9703 mL |
5 mM | 0.2594 mL | 1.297 mL | 2.5941 mL |
10 mM | 0.1297 mL | 0.6485 mL | 1.297 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Four new triterpenoid saponins from the leaves of Panax japonicus grown in southern Miyazaki Prefecture (4)
Chem Pharm Bull (Tokyo) 2013;61(3):273-8.PMID:23238233DOI:10.1248/cpb.c12-00794.
Four new dammarane-type triterpenoid saponins such as chikusetsusaponin LM3 (1), chikusetsusaponin LM4 (2), chikusetsusaponin LM5 (3), chikusetsusaponin LM6 (4), and twenty known triterpenoid saponins such as ginsenoside Rb3 (5), ginsenoside Rc (6), ginsenoside Rd (7), ginsenoside Re (8), ginsenoside Rg1 (9), ginsenoside F3 (10), Ginsenoside F5 (11), ginsenoside F6 (12), chikusetsusaponin IVa (13), chikusetsusaponin V (14), chikusetsusaponin L5 (15), chikusetsusaponin L9a (16), chikusetsusaponin L9bc (17), chikusetsusaponin L10 (18), chikusetsusaponin FK2 (19), chikusetsusaponin FK6 (20), chikusetsusaponin FK7 (21), chikusetsusaponin FT1 (22), chikusetsusaponin LM1 (23), and chikusetsusaponin LM2 (24), were isolated from the leaves of Panax japonicus C. A. MEYER collected in Miyazaki prefecture, Japan. The structures of new chikusetsusaponins were elucidated on the basis of spectral and physicochemical evidences.
Effects of thiram exposure on liver metabolism of chickens
Front Vet Sci 2023 Feb 28;10:1139815.PMID:36925611DOI:10.3389/fvets.2023.1139815.
Pesticides are widely used to control crop diseases, which have made an important contribution to the increase of global crop production. However, a considerable part of pesticides may remain in plants, posing a huge threat to animal safety. Thiram is a common pesticide and has been proven that its residues in the feed can affect the growth performance, bone formation, and intestinal health of chickens. However, there are few studies on the liver metabolism of chickens exposed to thiram. Here, the present study was conducted to investigate the effect of thiram exposure on liver metabolism of chickens. Metabolomics analysis shows that 62 metabolites were down-regulated (Ginsenoside F5, arbekacin, coproporphyrinogen III, 3-keto Fusidic acid, marmesin, isofumonisin B1, 3-Hydroxyquinine, melleolide B, naphazoline, marmesin, dibenzyl ether, etc.) and 35 metabolites were up-regulated (tetrabromodiphenyl ethers, deoxycholic acid glycine conjugate, L-Palmitoylcarnitine, austalide K, hericene B, pentadecanoylcarnitine, glyceryl palmitostearate, quinestrol, 7-Ketocholesterol, tetrabromodiphenyl ethers, etc.) in thiram-induced chickens, mainly involved in the metabolic pathways including glycosylphosphatidylinositol (GPI)-anchor biosynthesis, porphyrin and chlorophyll metabolism, glycerophospholipid metabolism, primary bile acid biosynthesis and steroid hormone biosynthesis. Taken together, this research showed that thiram exposure significantly altered hepatic metabolism in chickens. Moreover, this study also provided a basis for regulating the use and disposal of thiram to ensure environmental quality and poultry health.