Home>>Signaling Pathways>> Others>> Others>>Glycol salicylate

Glycol salicylate Sale

(Synonyms: 水杨酸乙二醇酯) 目录号 : GC30336

Glycolsalicylate是水杨酸的衍生物,可以用来改善皮肤的美学外观,来自专利US20150148320A1。

Glycol salicylate Chemical Structure

Cas No.:87-28-5

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥491.00
现货
5g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Glycol salicylate is a derivative of salicylic acid and can be used to improve the aesthetic appearance of the skin, extracted from patent US 20150148320 A1.

[1]. Kai Xi, et al. Cosmetic use of salicylic acid derivatives. US 20150148320 A1.

Chemical Properties

Cas No. 87-28-5 SDF
别名 水杨酸乙二醇酯
Canonical SMILES O=C(OCCO)C1=CC=CC=C1O
分子式 C9H10O4 分子量 182.17
溶解度 DMSO : 160 mg/mL (878.30 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.4894 mL 27.4469 mL 54.8938 mL
5 mM 1.0979 mL 5.4894 mL 10.9788 mL
10 mM 0.5489 mL 2.7447 mL 5.4894 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Extracorporeal removal of toxins

Holubek et al. reviewed data on extracorporeal removal (ECR) of toxins from the Toxic Exposure Surveillance System (TESS) from 1985 to 2005. Hemodialysis use increased, but hemoperfusion nearly disappeared. Lithium, ethylene glycol, salicylate, and, increasingly, acetaminophen still often necessitate hemodialysis; ECR for theophylline has disappeared. TESS data do not separate continuous renal replacement therapy from hemodialysis, and not all poisonings were reported in this system. Nonetheless, these trends are useful to the nephrology community.

Mechanistic Evaluation of Hydration Effects on the Human Epidermal Permeation of Salicylate Esters

We sought to understand when and how hydration enhances the percutaneous absorption of salicylate esters. Human epidermal membrane fluxes and stratum corneum solubilities of neat and diluted solutions of three esters were determined under hydrated and dehydrated conditions. Hydration doubled the human epidermal flux seen for methyl and ethyl salicylate under dehydrated conditions and increased the flux of neat glycol salicylate 10-fold. Mechanistic analyses showed that this hydration-induced enhancement arises mainly from an increase in the stratum corneum diffusivity of the three esters. Further, we showed that unlike methyl and ethyl salicylate, glycol salicylate is hygroscopic and the ?10-fold hydration-induced flux enhancement seen with neat glycol salicylate may be due to its ability to hydrate the stratum corneum to a greater extent. The hydration-induced enhancements in in vitro epidermal flux seen here for glycol and ethyl salicylate were similar to those reported for their percutaneous absorption rates in a comparable in vivo study, whilst somewhat higher enhancement was seen for methyl salicylate in vivo. This may be explained by a physiologically induced self enhancement of neat methyl salicylate absorption in vivo which is not applicable in vitro.

Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation

Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R? values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks).

[Influence of the excipient on the absorption of glycol salicylate administered in ointments by cutaneous and rectal routes]

Contact dermatitis from hydroxyethyl salicylate