GPR4 antagonist 1
目录号 : GC30520GPR4antagonist1是GPR4的拮抗剂,其IC50值为189nM。
Cas No.:1197879-16-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
GPR4 antagonist 1 is a GPR4 antagonist, with an IC50 of 189 nM.
[1]. ARYL SULFONOHYDRAZIDES. US 20090291942 A1.
Cas No. | 1197879-16-5 | SDF | |
Canonical SMILES | CC1=C2C(N(CC3=CC=C(/C=C/CN4CCN(C(C)C)CC4)C=C3)C(CC)=N2)=NC(C)=C1 | ||
分子式 | C27H37N5 | 分子量 | 431.62 |
溶解度 | DMSO : 125 mg/mL (289.61 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3169 mL | 11.5843 mL | 23.1685 mL |
5 mM | 0.4634 mL | 2.3169 mL | 4.6337 mL |
10 mM | 0.2317 mL | 1.1584 mL | 2.3169 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
New Therapeutic Approach for Intestinal Fibrosis Through Inhibition of pH-Sensing Receptor GPR4
Background: Patients suffering from inflammatory bowel diseases (IBDs) express increased mucosal levels of pH-sensing receptors compared with non-IBD controls. Acidification leads to angiogenesis and extracellular matrix remodeling. We aimed to determine the expression of pH-sensing G protein-coupled receptor 4 (GPR4) in fibrotic lesions in Crohn's disease (CD) patients. We further evaluated the effect of deficiency in Gpr4 or its pharmacologic inhibition. Methods: Paired samples from fibrotic and nonfibrotic terminal ileum were obtained from CD patients undergoing ileocaecal resection. The effects of Gpr4 deficiency were assessed in the spontaneous Il-10-/- and the chronic dextran sodium sulfate (DSS) murine colitis model. The effects of Gpr4 deficiency and a GPR4 antagonist (39c) were assessed in the heterotopic intestinal transplantation model. Results: In human terminal ileum, increased expression of fibrosis markers was accompanied by an increase in GPR4 expression. A positive correlation between the expression of procollagens and GPR4 was observed. In murine disease models, Gpr4 deficiency was associated with a decrease in angiogenesis and fibrogenesis evidenced by decreased vessel length and expression of Edn, Vegfα, and procollagens. The heterotopic animal model for intestinal fibrosis, transplanted with terminal ileum from Gpr4-/- mice, revealed a decrease in mRNA expression of fibrosis markers and a decrease in collagen content and layer thickness compared with grafts from wild type mice. The GPR4 antagonist decreased collagen deposition. The GPR4 expression was also observed in human and murine intestinal fibroblasts. The GPR4 inhibition reduced markers of fibroblast activation stimulated by low pH, notably Acta2 and cTgf. Conclusions: Expression of GPR4 positively correlates with the expression of profibrotic genes and collagen. Deficiency of Gpr4 is associated with a decrease in angiogenesis and fibrogenesis. The GPR4 antagonist decreases collagen deposition. Targeting GPR4 with specific inhibitors may constitute a new treatment option for IBD-associated fibrosis.
Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model
Inflammatory bowel disease (IBD) is characterized by chronic, recurring inflammation of the digestive tract. Current therapeutic approaches are limited and include biologics and steroids such as anti-TNFα monoclonal antibodies and corticosteroids, respectively. Significant adverse drug effects can occur for chronic usage and include increased risk of infection in some patients. GPR4, a pH-sensing G protein-coupled receptor, has recently emerged as a potential therapeutic target for intestinal inflammation. We have assessed the effects of a GPR4 antagonist, 2-(4-((2-Ethyl-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)methyl)phenyl)-5-(piperidin-4-yl)-1,3,4-oxadiazole (GPR4 antagonist 13, also known as NE-52-QQ57) in the dextran sulfate sodium (DSS)-induced acute colitis mouse model. The GPR4 antagonist 13 inhibited intestinal inflammation. The clinical parameters such as body weight loss and fecal score were reduced in the GPR4 antagonist 13 treatment group compared to vehicle control. Macroscopic disease indicators such as colon shortening, splenic expansion, and mesenteric lymph node enlargement were all reduced in severity in the GPR4 antagonist 13 treated mice. Histopathological features of active colitis were alleviated in GPR4 antagonist 13 treatment groups compared to vehicle control. Finally, inflammatory gene expression in the colon tissues and vascular adhesion molecule expression in the intestinal endothelia were attenuated by GPR4 antagonist 13. Our results indicate that GPR4 antagonist 13 provides a protective effect in the DSS-induced acute colitis mouse model, and inhibition of GPR4 can be explored as a novel anti-inflammatory approach.
GPR4 Knockout Improves the Neurotoxin-Induced, Caspase-Dependent Mitochondrial Apoptosis of the Dopaminergic Neuronal Cell
In Parkinson's disease, mitochondrial oxidative stress-mediated apoptosis is a major cause of dopaminergic neuronal loss in the substantia nigra (SN). G protein-coupled receptor 4 (GPR4), previously recognised as an orphan G protein coupled-receptor (GPCR), has recently been claimed as a member of the group of proton-activated GPCRs. Its activity in neuronal apoptosis, however, remains undefined. In this study, we investigated the role of GPR4 in the 1-methyl-4-phenylpyridinium ion (MPP+) and hydrogen peroxide (H2O2)-treated apoptotic cell death of stably GPR4-overexpressing and stably GPR4-knockout human neuroblastoma SH-SY5Y cells. In GPR4-OE cells, MPP+ and H2O2 were found to significantly increase the expression levels of both mRNA and proteins of the pro-apoptotic Bcl-2-associated X protein (Bax) genes, while they decreased the anti-apoptotic B-cell lymphoma 2 (Bcl-2) genes. In addition, MPP+ treatment activated Caspase-3, leading to the cleavage of poly (ADP-ribose) polymerase (PARP) and decreasing the mitochondrial membrane potential (ΔΨm) in GPR4-OE cells. In contrast, H2O2 treatment significantly increased the intracellular calcium ions (Ca2+) and reactive oxygen species (ROS) in GPR4-OE cells. Further, chemical inhibition by NE52-QQ57, a selective antagonist of GPR4, and knockout of GPR4 by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 decreased the Bax/Bcl-2 ratio and ROS generation, and stabilised the ΔΨm, thus protecting the SH-SY5Y cells from MPP+- or H2O2-induced apoptotic cell death. Moreover, the knockout of GPR4 decreased the proteolytic degradation of phosphatidylinositol biphosphate (PIP2) and subsequent release of the endoplasmic reticulum (ER)-stored Ca2+ in the cytosol. Our results suggest that the pharmacological inhibition or genetic deletion of GPR4 improves the neurotoxin-induced caspase-dependent mitochondrial apoptotic pathway, possibly through the modulation of PIP2 degradation-mediated calcium signalling. Therefore, GPR4 presents a potential therapeutic target for neurodegenerative disorders such as Parkinson's disease.
Identification of a Potent and Selective GPR4 Antagonist as a Drug Lead for the Treatment of Myocardial Infarction
GPR4, a pH-sensing G protein-coupled receptor, is highly expressed in endothelial cells and may be activated in myocardial infarction due the decreased tissue pH. We are interested in GPR4 antagonists as potential effective pharmacologic tools and/or drug leads for the treatment of myocardial infarction. We investigated the structure-activity relationship of a known GPR4 antagonist 1 as a lead compound to identify 3b as the first potent and selective GPR4 antagonist, whose effectiveness was demonstrated in a mouse myocardial infarction model.
The Neuroprotective Effects of GPR4 Inhibition through the Attenuation of Caspase Mediated Apoptotic Cell Death in an MPTP Induced Mouse Model of Parkinson's Disease
The proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits. NE52-QQ57, a selective GPR4 antagonist, reduced dopaminergic neuronal loss in MPTP-treated mice, improving motor and memory functions. MPTP and NE52-QQ57 co-treatment in mice significantly decreased pro-apoptotic marker Bax protein levels and increased anti-apoptotic marker Bcl-2 protein levels in the SNpc and striatum. MPTP-induced caspase 3 activation and poly (ADP-ribose) polymerase (PARP) cleavage significantly decreased in the SNpc and striatum of mice co-treated with NE52-QQ57. MPTP and NE52-QQ57 co-treatment significantly increased tyrosine hydroxylase (TH)-positive cell numbers in the SNpc and striatum compared with MPTP alone. NE52-QQ57 and MPTP co-treatment improved rotarod and pole test-assessed motor performance and improved Y-maze test-assessed spatial memory. Our findings suggest GPR4 may represent a potential therapeutic target for PD, and GPR4 activation is involved in caspase-mediated neuronal apoptosis in the SNpc and striatum of MPTP-treated mice.