HAPC-Chol
目录号 : GC43805A cationic cholesterol
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
HAPC-Chol is a cationic cholesterol. HAPC-Chol, as part of a lipoplex with DOPE , has been used for siRNA delivery and gene silencing in MCF-7 cells in a luciferase assay without affecting cell viability. It has also been used to deliver siRNA into mice via intravenous injection, resulting in HAPC-chol accumulation in the lungs.
Cas No. | SDF | ||
Canonical SMILES | C[C@H](CCCC(C)C)[C@@]1([H])CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](OC(NCCCNCCO)=O)CC[C@]4(C)[C@@]3([H])CC[C@@]21C.I | ||
分子式 | C33H58N2O3•HI | 分子量 | 658.7 |
溶解度 | DMF: 10 mg/ml,Ethanol: 10 mg/ml,Ethanol:PBS (pH 7.2) (1:6): 0.14 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.5181 mL | 7.5907 mL | 15.1814 mL |
5 mM | 0.3036 mL | 1.5181 mL | 3.0363 mL |
10 mM | 0.1518 mL | 0.7591 mL | 1.5181 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Effect of Cationic Lipid Type in Folate-PEG-Modified Cationic Liposomes on Folate Receptor-Mediated siRNA Transfection in Tumor Cells
Pharmaceutics 2019 Apr 15;11(4):181.PMID:30991703DOI:10.3390/pharmaceutics11040181.
In this study, we examined the effect of cationic lipid type in folate (FA)-polyethylene glycol (PEG)-modified cationic liposomes on gene-silencing effects in tumor cells using cationic liposomes/siRNA complexes (siRNA lipoplexes). We used three types of cationic cholesterol derivatives, cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol), N-(2-(2-hydroxyethylamino)ethyl)cholesteryl-3-carboxamide (OH-Chol), and cholesteryl (2-((2-hydroxyethyl)amino)ethyl)carbamate (OH-C-Chol), and we prepared three types of FA-PEG-modified siRNA lipoplexes. The modification of cationic liposomes with 1-2 mol % PEG-lipid abolished the gene-silencing effect in human nasopharyngeal tumor KB cells, which overexpress the FA receptor (FR). In contrast, FA-PEG-modification of cationic liposomes restored gene-silencing activity regardless of the cationic lipid type in cationic liposomes. However, the optimal amount of PEG-lipid and FA-PEG-lipid in cationic liposomes for selective gene silencing and cellular uptake were different among the three types of cationic liposomes. Furthermore, in vitro transfection of polo-like kinase 1 (PLK1) siRNA by FA-PEG-modified liposomes exhibited strong cytotoxicity in KB cells, compared with PEG-modified liposomes; however, in in vivo therapy, intratumoral injection of PEG-modified PLK1 siRNA lipoplexes inhibited tumor growth of KB xenografts, as well as that of FA-PEG-modified PLK1 siRNA lipoplexes. From these results, the optimal formulation of PEG- and FA-PEG-modified liposomes for FR-selective gene silencing might be different between in vitro and in vivo transfection.
Effect of cationic lipid in cationic liposomes on siRNA delivery into the lung by intravenous injection of cationic lipoplex
J Drug Target 2019 Feb;27(2):217-227.PMID:30024300DOI:10.1080/1061186X.2018.1502775.
Cationic liposomes composed of dialkyl cationic lipid such as 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) can efficiently deliver siRNA to the lungs following the intravenous injection of cationic liposome/siRNA complexes (lipoplexes). In this study, we examined the effect of cationic lipid of cationic liposomes on siRNA delivery to the lungs after intravenous injection. We used six kinds of cationic cholesterol derivatives and 11 kinds of dialkyl or trialkyl cationic lipids as cationic lipids, and prepared 17 kinds of cationic liposomes composed of a cationic lipid and 1,2-dioleoyl-L-α-glycero-3-phosphatidylethanolamine (DOPE) for evaluation of siRNA biodistribution and in vivo gene silencing effects. Among cationic liposomes, those composed of N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16), N,N-dimethyl-N-octadecyloctadecan-1-aminium bromide (DC-1-18), 2-((1,5-bis(octadecyloxy)-1,5-dioxopentan-2-yl)amino)-N,N,N-trimethyl-2-oxoethan-1-aminium chloride (DC-3-18D), 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino)-N,N,N-trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12), or cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol) with DOPE exhibited high accumulation of siRNA in the lung and significant suppression of Tie2 mRNA expression after the intravenous injection of cationic lipoplexes with Tie2 siRNA. Furthermore, DC-1-16/DOPE and DC-1-18/DOPE lipoplexes with protein kinase N3 (PKN3) siRNA could suppress the tumour growth when intravenously injected into mice with lung LLC metastasis. These findings indicate that the siRNA biodistribution and in vivo knockdown efficiency after the intravenous injection of cationic lipoplexes were strongly affected by the type of cationic lipid of cationic liposomes.