Hesperitin
(Synonyms: 橙皮素) 目录号 : GN10248A hypocholesterolemic citrus flavonoid
Cas No.:520-33-2
Sample solution is provided at 25 µL, 10mM.
Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation.
Hesperetin has the retention of antioxidant potential in self nano-emulsifying drug delivery system[1]. Hesperetin and NGR display broad-spectrum inhibition against human UGTs. Besides, Hesperetin exhibits strong inhibitory effects on UGT1A1, 1A3 and 1A9 (both IC50 and Ki values lower than 10 µM) and moderately inhibits UGT1A4, UGT1A7, UGT1A8 (IC50 values 29.68-63.87 µM)[2]. Hesperetin interacts with different types of proteins involving hydrogen bonds, pi-pi effects, pi-cation bonding and pi-sigma interactions with varying binding energies. Hesperetin exhibits drug-like properties which projects its potential as a therapeutic option for CHIKV infection[3]. Hesperetin dose-dependently reduces GCDCA-induced caspase-3 activity in cultured primary rat hepatocytes. Hesperetin also dose-dependently reduces CM-induced Nos2 (iNOS) expression in hepatocytes. Interestingly, hesperetin-induced expression of the antioxidant gene haem oxygenase 1 (HO-1) about fourfold compared with cytokine mixture alone[5].
Preadministration of Hesperetin (40 mg/kg b.w., oral) significantly attenuates the Cd-induced oxidative stress and mitochondrial dysfunction, restores the antioxidant and membrane-bound enzyme activities and decreases apoptosis in the brain of rats[4]. Hesperetin (200 mg/kg) attenuates Con A-induced hepatocyte apoptosis and hepatic Nos2 (iNOS) expression in mice. Hesperetin co-treatment also decreases the occurrence of apoptotic bodies, hydropic degeneration, nuclear fragments, autolysis and haemorrhage. The number of leukocytes infiltrated in liver tissue of mice with D-GalN/LPS-induced fulminant hepatitis are significantly decreased by hesperetin in a murine model[5].
References:
[1]. Arya A, et al. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: Optimization, in vivo evaluation and uptake mechanism. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:954-964
[2]. Liu D, et al. Inhibitory Effect of Hesperetin and Naringenin on Human UDP-Glucuronosyltransferase Enzymes: Implications for Herb-Drug Interactions. Biol Pharm Bull. 2016;39(12):2052-2059.
[3]. Oo A, et al. In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ. 2016 Oct 26;4:e2602. eCollection 2016.
[4]. Shagirtha K, et al. Neuroprotective efficacy of hesperetin against cadmium induced oxidative stress in the brain of rats. Toxicol Ind Health. 2016 Nov 1. pii: 0748233716665301
[5]. Bai X, et al. The protective effect of the natural compound hesperetin against fulminant hepatitis in vivo and in vitro. Br J Pharmacol. 2017 Jan;174(1):41-56
[6]. Li Q, et al. Hesperetin Induces Apoptosis in Human Glioblastoma Cells via p38 MAPK Activation. Nutr Cancer. 2019 Jul 11:1-8.
Kinase experiment: | First, 0.5 mL tissue homogenate is diluted with 1 mL water. Then, to this mixture, 2.5 mL ethanol and 1.5 mL chloroform (all reagents chilled) are added and shaken for 1 min at 4°C, then centrifuged. The enzyme activity in the supernatant is determined. The assay mixture contained 1.2 mL sodium pyrophosphate buffer (0.025 M, pH 8.3), 0.1 mL 186 mM phenazine methosulfate (PMS), 0.3 mL 30 mM Nitroblue tetrazolium (NBT), and 0.2 mL of nicotinamide adenine dinucleotide (NADH), and appropriately diluted enzyme preparation and water in a total volume of 3 mL. Reaction is initiated by the addition of NADH. After incubation at 30°C for 90 min, the reaction is stopped by the addition of 1 mL glacial acetic acid. The reaction mixture is stirred vigorously and shaken with 4 mL n-butanol. The intensity of the chromogen in the butanol layer is measured at 560 nm against a butanol blank. A system without enzyme served as control. One unit of enzyme activity is defined as 50% inhibition of NBT reduction in 1 min under the assay conditions. |
Animal experiment: | After 7 days of adjusting, the animals are randomly divided into 10 experimental groups. Control group (n=8): These animals are treated with the equivalent volume of PBS as used for the administration of Con A and D-GalN/LPS. Control hesperetin group (n=8): The mice are treated with hesperetin 400 mg/kg p.o. in 0.5% sodium carboxymethylcellulose (CMC-Na) solution for 10 days. Con A group (n=15): The animals are treated with the same volume of CMC-Na as used for administration of hesperetin for 10 days and are challenged with Con A (i.v.15 mg/kg). Con A + hesperetin groups: The animals receive various doses of hesperetin (100, 200, 400 mg/kg) p.o. for 10 days before Con A injection (each group n=15). D-GalN/LPS group (n=15): The animals are given CMC-Na for 10 days and injected i.p. with D-GalN (700 mg/kg)/LPS (5 μg/kg). D-GalN/LPS + hesperetin groups: Three doses of hesperetin (100, 200, 400 mg/kg) are given to mice once daily for 10 days. D-GalN (700 mg/kg)/LPS (5 μg/kg) are injected i.p. (each group n=15). |
References: [1]. Arya A, et al. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: Optimization, in vivo evaluation and uptake mechanism. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:954-964 |
Cas No. | 520-33-2 | SDF | |
别名 | 橙皮素 | ||
化学名 | (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydrochromen-4-one | ||
Canonical SMILES | COC1=C(C=C(C=C1)C2CC(=O)C3=C(C=C(C=C3O2)O)O)O | ||
分子式 | C16H14O6 | 分子量 | 302.29 |
溶解度 | ≥ 15.1mg/mL in DMSO | 储存条件 | Store at 2-8°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3081 mL | 16.5404 mL | 33.0808 mL |
5 mM | 0.6616 mL | 3.3081 mL | 6.6162 mL |
10 mM | 0.3308 mL | 1.654 mL | 3.3081 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet