Hoechst 33258
(Synonyms: bisBenzimide H 33258; H 33258) 目录号 : GC64380核酸染色剂Hoechst 33258常被用作细胞可渗透性核复染剂,与dsDNA结合后发出蓝色荧光。
Cas No.:23491-44-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
本方案仅提供一个指导,请根据您的具体需要进行修改。
1、制备Hoechst染色液
(1) 配制Hoechst染料储存液: 使用DMSO溶解固体粉末,配置成10mg/mL的Hoechst染料储存液。
注意: Hoechst储存液建议分装后于-4℃或-20℃避光保存,避免反复冻融。
(2)工作液制备:使用预热的无血清培养基或缓冲液(如HBSS或PBS)稀释储存液,配制浓度为10μg/mL的Hoechst工作液。
注意: 请根据实际情况调整 Hoechst 工作液浓度,现用现配。
2、细胞染色
2.1 悬浮细胞(以6孔板为例)
(1)悬浮细胞经1000g离心3-5min。弃去上清液,使用PBS清洗两次,每次5分钟。
(2)加入1mL的Hoechst染料工作液,室温避光孵育5-10 min分钟。
(3)孵育结束后,经1000g离心5分钟,去除上清液,加入PBS清洗2-3次,每次5分钟。
(4)使用无血清细胞培养基或PBS重悬细胞,通过荧光显微镜或流式细胞技术进行观察。
2.2 贴壁细胞
(1)在无菌盖玻片上培养贴壁细胞。
(2)从培养基中移走盖玻片,吸出过量的培养基,将盖玻片放在潮湿的环境中。
(3)从盖玻片的一角加入100μL的Hoechst染料工作液,轻轻晃动使染料均匀覆盖所有细胞,室温避光孵育5-15min分钟。
(4)吸弃染料工作液,使用培养液洗盖玻片2~3次,通过荧光显微镜进行观察。
注意事项:
①对于固定的细胞或组织样品的染色,固定后需漂洗去除固定剂;
②Hoechst 33258染色通常在其他染色后进行,如果不需要进行其它染色,则直接进行Hoechst 33258染色;
③为减缓荧光淬灭,建议使用抗荧光淬灭封片剂;
④荧光染料均存在淬灭问题,请尽量注意避光;
⑤Hoechst 33258对人体有一定刺激性,为了您的安全和健康,请穿实验服并戴一次性手套操作。
References:
[1]. K D Harshman, P B Dervan. Molecular recognition of B-DNA by Hoechst 33258. 1985 Jul 11;13(13):4825-35. doi: 10.1093/nar/13.13.4825.
The nucleic acid stain Hoechst 33258 (Ex/Em: 352/461 nm) is frequently utilized as a cell-permeable nuclear counterstain that emits a blue fluorescence upon binding to dsDNA. Hoechst 33258 is commonly employed in various studies related to cell counting, cell cycle analysis, and cell replication. It is particularly useful in identifying condensed nuclei in apoptotic cells, as well as in combination with BrdU staining for cell-cycle studies. Hoechst 33258 works similarly to Hoechst 33342 but is less cell permeable.
Hoechst dyes are also useful for monitoring cell viability by tracking changes in their emission spectra. As minor groove-binding DNA stains with AT selectivity, the Hoechst dyes are able to bind to all nucleic acids, but they show a greater fluorescence enhancement for AT-rich double-stranded DNA strands compared to GC-rich strands [1]. This property has been exploited to identify Q-bands in chromosomes, which are regions rich in AT base pairs that fluoresce brightly when stained with the quinacrine dye [2].
Fig. Fluorescence excitation and emission spectra of Hoechst 33258 bound to DNA
核酸染料Hoechst 33258(Ex/Em:352/461 nm)通常作为可穿透细胞膜的核染色剂,在结合dsDNA后发出蓝色荧光,被广泛用于与细胞计数、细胞周期分析和细胞复制相关的各种研究中。它特别适用于鉴定凋亡细胞中的浓缩核,以及与BrdU染色结合用于细胞周期研究。Hoechst 33258的作用类似于Hoechst 33342,但其细胞穿透性较低。
Hoechst染料还可通过跟踪其发射光谱变化来监测细胞存活率。作为具有AT选择性的小沟结合DNA染料,Hoechst染料能够结合所有核酸,但相对于GC丰富的链,它们对富含AT的双链DNA链显示出更大的荧光增强作用[1]。这一特性已被用于鉴定染色体中富含AT碱基对的Q带区域,当用quinacrine染料染色时,这些区域会发出明亮的荧光[2]。
References:
[1]. Portugal J, Waring MJ. Assignment of DNA binding sites for 4′, 6-diamidine-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1988 Feb 28;949(2):158-68.
[2]. Weisblum B, Haenssler E. Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma. 1974 Sep;46(3):255-60.
Cas No. | 23491-44-3 | SDF | Download SDF |
别名 | bisBenzimide H 33258; H 33258 | ||
分子式 | C25H24N6O | 分子量 | 424.5 |
溶解度 | DMSO : 41.67 mg/mL (98.16 mM; ultrasonic and warming and heat to 60°C) | 储存条件 | -20°C, protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3557 mL | 11.7786 mL | 23.5571 mL |
5 mM | 0.4711 mL | 2.3557 mL | 4.7114 mL |
10 mM | 0.2356 mL | 1.1779 mL | 2.3557 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Study of complexes of Hoechst 33258 with poly(rA)-poly(rU) depending on various ionic strengths in the water-saline solution
J Biomol Struct Dyn 2022 Feb;40(3):1182-1188.PMID:32954957DOI:10.1080/07391102.2020.1823883.
Comparative study of the complexes of groove-binding ligand Hoechst 33258 (H33258) with synthetic homopolynucleotides poly(rA)-poly(rU) and poly(dA)-poly(dT) has been carried out at various concentration ratios of r = ligand/nucleic acids (NA) and different ionic strengths of the water-saline solution 0.02, 0.04 and 0.1 M, using the method of UV-melting. It was revealed that the melting curves of the complexes of poly(dA)-poly(dT) with H33258 at the low concentrations of ligand are biphasic, which actually does not depend on the solution ionic strength. In the case of the complexes of poly(rA)-poly(rU)-H33258, the melting curves become quasi-biphasic only at the ionic strength 0.02 M and relatively high concentrations of the ligand. Differential melting curves (DMC) of the mentioned polynucleotides and their complexes with H33258 were obtained as well. DMC of poly(rA)-poly(rU) were found to be significantly wide at the ionic strengths of the solution 0.02 and 0.04 M and to show an intrinsic heterogeneity of double-stranded structure of this polynucleotide.Communicated by Ramaswamy H. Sarma.
Fluorescence anisotropy studies on the Hoechst 33258-DNA interaction: the solvent effect
J Biomol Struct Dyn 2021 Aug;39(13):4902-4906.PMID:32568619DOI:10.1080/07391102.2020.1782267.
Fluorescence anisotropy method was applied to characterize the interactions of DNA minor groove binder Hoechst 33258 with different solvents without and in the presence of DNA. It is important to study the interaction of small molecules with DNA for the purpose of better understanding the mechanism of their action, as well as to design novel and more effective compounds. Spectroscopic study of the ligand in different binary mixed solvents containing DMSO, alcohols and buffer was carried out. Studies were performed without and in the presence of DNA. Fluorescence anisotropy studies reveal the characteristics of Hoechst 33258 in different mixed solvents. The results show the strong dependence of the anisotropy of Hoechst 33258 on solvent content, viscosity and intermolecular interactions. Communicated by Ramaswamy H. Sarma.
Binding of Hoechst 33258 and its derivatives to DNA
J Biomol Struct Dyn 2009 Jun;26(6):701-18.PMID:19385699DOI:10.1080/07391102.2009.10507283.
In the present work, we employed UV-VIS spectroscopy, fluorescence methods, and circular dichroism spectroscopy (CD) to study the interaction of dye Hoechst 33258, Hoechst 33342, and their derivatives to poly[d(AT)].poly[d(AT)], poly(dA).poly(dT), and DNA dodecamer with the sequence 5'-CGTATATATACG-3'. We identified three types of complexes formed by Hoechst 33258, Hoechst 33342, and methylproamine with DNA, corresponding to the binding of each drug in monomer, dimer, and tetramer forms. In a dimer complex, two dye molecules are sandwiched in the same place of the minor DNA groove. Our data show that Hoechst 33258, Hoechst 33342, and methylproamine also form complexes of the third type that reflects binding of dye associates (probably tetramers) to DNA. Substitution of a hydrogen atom in the ortho position of the phenyl ring by a methyl group has a little effect on binding of monomers to DNA. However it reduces strength of binding of tetramers to DNA. In contrast, a Hoechst derivative containing the ortho-isopropyl group in the phenyl ring exhibits a low affinity to poly(dA).poly(dT) and poly[d(AT)].poly[d(AT)] and binds to DNA only in the monomer form. This can be attributed to a sterical hindrance caused by the ortho-isopropyl group for side-by-side accommodation of two dye molecules in the minor groove. Our experiments show that mode of binding of Hoechst 33258 derivatives and their affinity for DNA depend on substituents in the ortho position of the phenyl ring of the dye molecule. A statistical mechanical treatment of binding of Hoechst 33258 and its derivatives to a polynucleotide lattice is described and used for determination of binding parameters of Hoechst 33258 and its derivatives to poly[d(AT)].poly[d(AT)] and poly(dA).poly(dT).
DNA minor-groove binder Hoechst 33258 destabilizes base-pairing adjacent to its binding site
Commun Biol 2020 Sep 22;3(1):525.PMID:32963293DOI:10.1038/s42003-020-01241-4.
Understanding the dynamic interactions of ligands to DNA is important in DNA-based nanotechnologies. By structurally tracking the dissociation of Hoechst 33258-bound DNA (d(CGCAAATTTGCG)2) complex (H-DNA) with T-jump 2D-IR spectroscopy, the ligand is found to strongly disturb the stability of the three C:G base pairs adjacent to A:T the binding site, with the broken base pairs being more than triple at 100 ns. The strong stabilization effect of the ligand on DNA duplex makes this observation quite striking, which dramatically increases the melting temperature and dissociation time. MD simulations demonstrate an important role of hydration water and counter cations in maintaining the separation of terminal base pairs. The hydrogen bonds between the ligand and thymine carbonyls are crucial in stabilizing H-DNA, whose breaking signal appearing prior to the complete dissociation. Thermodynamic analysis informs us that H-DNA association is a concerted process, where H cooperates with DNA single strands in forming H-DNA.
Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc
Biochem Biophys Res Commun 2003 Oct 17;310(2):505-12.PMID:14521939DOI:10.1016/j.bbrc.2003.09.052.
In vitro binding of Hoechst 33258 to the promoter region of human c-myc, d(GG GGAGGG TGG GGA GGG TGG GGA AGG TGG GG) which forms G-quadruplex, both in vitro and in vivo in the presence of metal ions, was investigated by equilibrium absorption, fluorescence, and kinetic surface plasmon resonance methods. Hypochromic effect in UV absorption spectra and blue shift in fluorescence emission maxima of Hoechst in the presence of quadruplex revealed that Hoechst binds to the quadruplex. Analysis of UV and fluorescence titration data revealed that Hoechst binds to quadruplex with binding affinity of the order of 10(6). Anisotropy measurements and higher lifetime obtained from time-resolved decay experiments revealed that quadruplex-bound Hoechst is rotationally restricted in a less polar environment than the bulk buffer medium. From surface plasmon resonance studies, we obtained kinetic association (k(a)) and dissociation (k(d)) of 1.23+/-0.04 x 10(5)M(-1)s(-1) and 0.686+/-0.009 s(-1), respectively. As Hoechst is known to bind A-T-rich region of duplex DNA, here we propose the likelihood of Hoechst interacting with the AAGGT loop of the quadruplex.