Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Hydroxy Bosentan

Hydroxy Bosentan Sale

(Synonyms: 波生坦羟甲基杂质,Ro 48-5033) 目录号 : GC43876

A metabolite of bosentan

Hydroxy Bosentan Chemical Structure

Cas No.:253688-60-7

规格 价格 库存 购买数量
500μg
¥1,593.00
现货
1mg
¥3,032.00
现货
5mg
¥11,957.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Hydroxy bosentan is an active phase I metabolite of bosentan produced by the cytochrome P450 isoforms CYP3A4 and CYP2C9. Bosentan is an antagonist of the endothelin receptors type A (Ki = 6.5 nM) and type B (Ki = 340 nM). Up to 20% of the activity of bosentan may be due to the action of hydroxy bosentan because even though it has a lower affinity for endothelin receptors, its concentration is 3-fold higher in plasma.

Chemical Properties

Cas No. 253688-60-7 SDF
别名 波生坦羟甲基杂质,Ro 48-5033
Canonical SMILES COC1=CC=CC=C1OC2=C(NS(C3=CC=C(C(C)(CO)C)C=C3)(=O)=O)N=C(C4=NC=CC=N4)N=C2OCCO
分子式 C27H29N5O7S 分子量 567.6
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7618 mL 8.809 mL 17.618 mL
5 mM 0.3524 mL 1.7618 mL 3.5236 mL
10 mM 0.1762 mL 0.8809 mL 1.7618 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Comparison of the inhibitory effect of ketoconazole, voriconazole, fluconazole, and itraconazole on the pharmacokinetics of bosentan and its corresponding active metabolite Hydroxy Bosentan in rats

Xenobiotica 2020 Mar;50(3):280-287.PMID:31199171DOI:10.1080/00498254.2019.1628321.

1. This study aimed to investigate the inhibitory effect of azole antifungal agents, including ketoconazole, voriconazole, fluconazole, and itraconazole, on the pharmacokinetics of bosentan (BOS) and its active metabolite Hydroxy Bosentan (OHBOS) in Sprague-Dawley (SD) rats.2. A total of 25 healthy male SD rats were divided into five groups and treated with various azole antifungal agents by gavage, followed by a single dose of BOS after 30 min.3. The study found that ketoconazole led to a significant increase (5.1-fold) in the AUC(0-t) of BOS, associated with a 5.8-fold elevation in the Cmax, which was greater than that for fluconazole (2.6- and 2.9-fold) and voriconazole (1.1- and 1.7-fold). Accordingly, the Vz/F and CLz/F of BOS reduced by 89.2% and 83.7%, respectively, on administering ketoconazole concomitantly. However, fluconazole caused a decrease in Vz/F and CLz/F by 77.4% and 72.2%, respectively, compared with voriconazole that exhibited a decrease in CLz/F by 51.7% with a negligible change in Vz/F. Also, obvious differences were observed in the pharmacokinetic parameters of OHBOS between the control and treated groups.4. Collectively, treatment with ketoconazole resulted in a prominent inhibitory effect on the metabolism of BOS, followed by treatment with fluconazole, voriconazole, and itraconazole. Therefore, these details of animal studies may help draw more attention to the safety of BOS while combining it with ketoconazole, voriconazole, fluconazole, or itraconazole clinically.

Desmethyl bosentan displays a similar in vitro interaction profile as bosentan

Pulm Pharmacol Ther 2015 Feb;30:80-6.PMID:25535031DOI:10.1016/j.pupt.2014.12.001.

The endothelin-1 receptor antagonists bosentan and ambrisentan used for the treatment of pulmonary arterial hypertension remarkably differ in their potential to act as perpetrators in pharmacokinetic drug-drug interactions. So far, it is not clear whether the metabolites of bosentan and ambrisentan contribute to the extent of drug interactions. We therefore investigated the effects of 4-hydroxymethyl ambrisentan, Hydroxy Bosentan, desmethyl bosentan, and hydroxy desmethyl bosentan on targets which are inhibited or induced by the parent compounds. The hydroxylated metabolites of ambrisentan and bosentan neither induced any of the genes investigated at the mRNA level, nor inhibited P-glycoprotein (P-gp) measured by calcein assay in L-MDR1 cells, and only weakly inhibited organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 measured by 8-fluorescein-cAMP uptake in HEK-OATP1B1 and HEK-OATP1B3 cells. In contrast, desmethyl bosentan induced mRNA expression of cytochrome P450 3A4 (CYP3A4, about 6-fold at 50 μM), ABCB1 (P-gp, about 4.5-fold at 50 μM), and ABCG2 (breast cancer resistance protein, about 2-fold at 50 μM), whereas CYP2C19, ABCB11, and ABCC2 (multidrug resistance-associated protein 2) were not induced in LS180 cells. In a reporter gene assay, desmethyl bosentan activated pregnane X receptor with the highest potency of all metabolites tested. Whereas desmethyl bosentan did not inhibit P-gp, it inhibited OATP1B1 with an IC50 of 3.8 μM (1.9-7.6) (geometric mean, 95% CI) and OATP1B3 with an IC50 of 7.4 μM (2.6-21.52). In conclusion, our data demonstrate that desmethyl bosentan exhibits a similar pharmacokinetic interaction profile as bosentan and might contribute to the inducing effects of the parent compound.

Development and validation of a fully automated online human dried blood spot analysis of bosentan and its metabolites using the Sample Card And Prep DBS System

J Chromatogr B Analyt Technol Biomed Life Sci 2012 Feb 15;885-886:50-60.PMID:22227055DOI:10.1016/j.jchromb.2011.12.012.

This paper describes the development and validation of a liquid chromatography (LC)-electrospray ionization tandem mass spectrometry assay for the fully automated simultaneous determination of bosentan, a dual endothelin receptor antagonist used in the treatment of pulmonary arterial hypertension, and its three primary metabolites Hydroxy Bosentan (Ro 48-5033), desmethyl bosentan (Ro 47-8634), and hydroxy desmethyl bosentan (Ro 64-1056) in human dried blood spots (DBS) by use of the Sample Card And Prep (SCAP) DBS System. The system enabled the online extraction of compounds from filter paper cards without the need for punching and sample pretreatment. This was realized by automatic introduction of DBS sample cards into the LC flow via a pneumatically controlled clamp module. Using a three-column setup comprised of two pre columns for successive online DBS sample cleanup and a Synergi™ POLAR-RP C(18) analytical column for chromatographic separation under gradient conditions with a mobile phase A consisting of 1% acetic acid and a mobile phase B consisting of 1% acetic acid in methanol/2-propanol (80/20, v/v). MS/MS detection was performed in the positive multiple reaction monitoring mode using a Sciex API 4000 triple quadrupole LC-MS/MS system equipped with a TurboIonSpray™ source. The total run time was 9.0min. The individual phases of online human DBS analysis were synchronized by automated valve switching. The analytical method was shown to be sensitive and selective with inter-day accuracy and precision of 91.6-108.0% and 3.4-14.6%, respectively, and it exhibited good linearity (r(2)≥0.9951 for all analytes) over the concentration range of 2ng/mL (5ng/mL for Ro 47-8634)-1500ng/mL. The analytes were stable in human DBS over 3.5 months at ambient temperature and accurate and precise results were obtained when using a blood spot volume between 20 and 30μL. Furthermore, no apparent (-8.9 to 12.6%) impact of hematocrit values ranging from 0.35 to 0.65 was observed on the quantification of the analytes. The system allowed very good recoveries of all analytes, between 83.0% and 92.3% for bosentan, between 94.4% and 100% for Ro 48-5033, between 98.0% and 100% for Ro 47-8634, and between 94.3% and 100% for Ro 64-1056. The validation demonstrated that the SCAP DBS System provides a robust automated platform for DBS analysis.