Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Hydroxyacetone

Hydroxyacetone Sale

(Synonyms: 丙酮醇) 目录号 : GC60916

Hydroxyacetone是一种内源性代谢产物。

Hydroxyacetone Chemical Structure

Cas No.:116-09-6

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Hydroxyacetone is an endogenous metabolite.

Chemical Properties

Cas No. 116-09-6 SDF
别名 丙酮醇
Canonical SMILES CC(CO)=O
分子式 C3H6O2 分子量 74.08
溶解度 DMSO : 100 mg/mL (1349.89 mM; Need ultrasonic) 储存条件 4°C, stored under nitroge
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 13.4989 mL 67.4946 mL 134.9892 mL
5 mM 2.6998 mL 13.4989 mL 26.9978 mL
10 mM 1.3499 mL 6.7495 mL 13.4989 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Hydroxyacetone Production From C3 Criegee Intermediates

J Phys Chem A 2017 Jan 12;121(1):16-23.PMID:28001404DOI:10.1021/acs.jpca.6b07712.

Hydroxyacetone (CH3C(O)CH2OH) is observed as a stable end product from reactions of the (CH3)2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for Hydroxyacetone formation, including unimolecular isomerization via hydrogen atom transfer and -OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to Hydroxyacetone. The Hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.

Vibrational analysis of Hydroxyacetone

Spectrochim Acta A Mol Biomol Spectrosc 2005 Jan 14;61(3):477-84.PMID:15582815DOI:10.1016/j.saa.2004.05.007.

In order to be able to fully understand the vibrational dynamics of monosaccharide sugars, we started with Hydroxyacetone CH2OHCOCH3, and glycolaldehyde CH2OHCOH, which are among the smallest molecules that contain hydroxyl and carbonyl group on neighboring carbon atoms. This sterical configuration is characteristic for saccharides and determines their biochemical activity. In this work vibrational analysis of Hydroxyacetone was undertaken by performing the normal coordinate analysis for glycolaldehyde first, and transferring these force constants to Hydroxyacetone. The observed Raman and infrared bands for 90 wt.% solution of Hydroxyacetone in water (acetol) were used as a first approximation for the bands of free Hydroxyacetone. The number of observed Raman and infrared bands for acetol exceeds the number of calculated values for the most stable Hydroxyacetone conformer with Cs symmetry, which suggests more than one conformer of Hydroxyacetone in water solution. In particular, there are two bands both in infrared (1083 and 1057 cm(-1)) and in Raman spectrum (1086.5 and 1053 cm(-1)) that are assigned to the CO stretching mode and this is one of the indicators of several Hydroxyacetone conformers in the solution. Additional information was obtained from low temperature Raman spectra: at 240 K a broad asymmetric band centered around 280 cm(-1) appears, suggesting a disorder in the orientation of hydroxyl groups. Glassy state forms at approximately 150K. The broad band at 80 cm(-1) is assigned to frozen torsions of hydroxymethyl groups.

Hydroxyacetone: A Glycerol-Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes

ChemSusChem 2017 Aug 10;10(15):3105-3110.PMID:28643864DOI:10.1002/cssc.201700996.

Here, we propose the use of Hydroxyacetone, a dehydration product of glycerol, as a platform for the electrocatalytic synthesis of acetone, 1,2-propanediol, and 2-propanol. 11 non-noble metals were investigated as electrode materials in combination with three different electrolyte compositions toward the selectivity, Coulombic efficiency (CE), and reaction rates of the electrocatalytic hydrogenation (formation of 1,2-propanediol) and hydrodeoxygenation (formation of acetone and propanol) of Hydroxyacetone. With a selectivity of 84.5 %, a reaction rate of 782 mmol h-1 m-2 and a CE of 32 % (for 0.09 m Hydroxyacetone), iron electrodes, in a chloride electrolyte, yielded the best 1,2 propanediol formation. A further enhancement of the performance can be achieved upon increasing the educt concentration to 0.5 m, yielding a reaction rate of 2248.1 mmol h-1 m-2 and a CE of 64.5 %. Acetone formation was optimal at copper and lead electrodes in chloride solution, with lead showing the lowest tendency of side product formation. 2-propanol formation can be achieved using a consecutive oxidation of the formed acetone (at iron electrodes). 1-propanol formation was observed only in traces.

Formation and photochemical investigation of brown carbon by Hydroxyacetone reactions with glycine and ammonium sulfate

RSC Adv 2018 Jun 6;8(37):20719-20725.PMID:35542337DOI:10.1039/c8ra02019a.

Increasing attention has been paid to atmospheric "brown carbon" (BrC) aerosols due to their effect on the earth's climate. Aqueous BrC aerosols were formed through aqueous reactions of Hydroxyacetone (HA) with nitrogen compounds such as glycine (Gly) and/or ammonium sulfate (AS). When exposed to nitrogen compounds for several days, HA, as a type of aqueous carbonyl compound, becomes absorbent and fluorescent in the blue visible and near ultraviolet regions, which have been monitored by UV/vis and fluorescence spectroscopy. In this study, we quantified absorption and excitation-emission matrix (EEM) spectra in the formation of aqueous BrCs, which was generated from HA-Gly and HA-Gly-AS mixtures, respectively. The obtained data was used to determine the base-10 absorption coefficient (α), absorption Angstrom exponent (AAE), and effective quantum yield (QY). All of the related parameters provide further evidence for the formation of aqueous BrC. The absorbances of the as-obtained BrCs follow the order HA-Gly-AS > HA-Gly > HA-AS. In other words, HA-Gly-AS mixtures displayed the most intense absorbances, whereas HA-AS mixtures barely produced visible absorbance. It is reasonable to speculate that Gly promotes the formation of HA-Gly BrC mixtures. The experimental results are consistent with previous measurements reported by Powelson et al. BrCs from HA-Gly-AS and HA-Gly exhibit stronger fluorescence between 300 and 400 nm. Glycine plays a more important role in the formation of aqueous BrC than that of AS. Furthermore, we examined the mass absorption coefficient (MAC) by photolysis of aqueous BrCs, which resulted from the oxidation of HA-Gly and HA-Gly-AS mixtures by 5 mM H2O2. An effective photolysis time induced significant changes near-UV (300-400 nm) absorption intensity of HA-Gly and HA-Gly-AS mixtures. These results emphasize the dynamic nature of the corresponding atmospheric aqueous BrC. Overall, our study provides the optical properties of the corresponding atmospheric aqueous BrC and the H2O2 oxidation photolysis process of the as-obtained BrC in detail, which may contribute to the understanding of the important effects of aqueous BrC for atmospheric chemistry and climate.

Measurement of atmospheric Hydroxyacetone, glycolaldehyde, and formaldehyde

Environ Sci Technol 2009 Apr 15;43(8):2753-9.PMID:19475945DOI:10.1021/es803025g.

A method has been modified and optimized for the measurements of Hydroxyacetone as well as formaldehyde and glycolaldehyde, based on aqueous scrubbing using a coil sampler followed by DNPH derivatization and HPLC analysis. Derivatization equilibrium and kinetics were studied to optimize the hydroxyacetone-DNPH derivative yield. It was found that the low sensitivity of Hydroxyacetone by this method is due to a relatively small equilibrium constant for the hydroxyacetone-DNPH derivatization reaction, and thus it can be improved by increasing DNPH reagent concentration. In a medium containing 500 microM DNPH and 50 mM HCl, the derivatization reaches equilibrium within 30 min. An online reagent purification procedure using a DNPH-saturated Sep-Pak C-18 cartridge effectively removed hydrazone impurities in the DNPH reagent solution, and a sample preconcentration procedure using a C-18 guard column greatly enhanced the sensitivity and lowered the detection limits. The lower detection limits of the system under optimized conditions are 30, 9, and 36 pptv for Hydroxyacetone, glycolaldehyde, and formaldehyde, respectively, with a sampling/analysis cycle time of 30 min. The method has been successfully deployed at a rural site in Pinnacle State Park in Addison, NY, for a 5 week period during the summer of 1998. The ambient concentration means (medians) were 372 (332), 301 (323), and 2040 (2030) pptv for Hydroxyacetone, glycolaldehyde, and formaldehyde, respectively. A late-afternoon maximum and an early morning minimum were observed in the diurnal concentration distributions of all three carbonyl compounds. Good correlations among the three carbonyl compounds suggest that they originated from a common source, i.e., photochemical oxidation of biogenic hydrocarbons. Formaldehyde photolysis accounted for about 23% of the total radical photoproduction, whereas contributionsfrom Hydroxyacetone and glycolaldehyde photolysis were insignificant because of the much slower photolysis and lower concentrations of these compounds.