Indole-3-Acetic Acid (sodium salt)
(Synonyms: 1H-吲哚-3-羧酸(吲哚乙酸),Indole-3-acetic acid sodium; 3-IAA sodium) 目录号 : GC43901A plant growth regulator
Cas No.:6505-45-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Indole-3-Acetic acid is a naturally occurring plant hormone of the auxin class. It can stimulate cell elongation and division, promoting plant growth and development. However, at high concentrations it exhibits growth inhibiting effects, including epinasty and prevention of shoot and root growth. This latter effect formed the basis for which synthetic auxins were developed as herbicides and bioregulators in agriculture.
Cas No. | 6505-45-9 | SDF | |
别名 | 1H-吲哚-3-羧酸(吲哚乙酸),Indole-3-acetic acid sodium; 3-IAA sodium | ||
Canonical SMILES | [O-]C(CC1=CNC2=CC=CC=C21)=O.[Na+] | ||
分子式 | C10H8NO2•Na | 分子量 | 197.2 |
溶解度 | DMF: 10 mg/ml,DMSO: 15 mg/ml,Ethanol: 1 mg/ml,PBS (pH 7.2): 10 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 5.071 mL | 25.355 mL | 50.7099 mL |
5 mM | 1.0142 mL | 5.071 mL | 10.142 mL |
10 mM | 0.5071 mL | 2.5355 mL | 5.071 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Production of Indole-3-Acetic Acid by Bacillus circulans E9 in a low-cost medium in a bioreactor
J Biosci Bioeng 2022 Jul;134(1):21-28.PMID:35461767DOI:10.1016/j.jbiosc.2022.03.007.
Bacillus circulans E9 (now known as Niallia circulans) promotes plant growth-producing Indole-3-Acetic Acid (IAA), showing potential for use as a biofertilizer. In this work, the use of a low-cost medium containing industrial substrates, soybean, pea flour, Solulys, Pharmamedia, yeast extract, and sodium chloride (NaCl), was evaluated as a substitute for microbiological Luria Broth (LB) medium for the growth of B. circulans E9 and the production of IAA. In Erlenmeyer flasks with pea fluor medium (PYM), the maximum production of IAA was 7.81 ± 0.16 μg mL-1, while in microbiological LB medium, it was 3.73 ± 0.15 μg mL-1. In addition, an oxygen transfer rate (OTR) of 1.04 kg O2 m-3 d-1 allowed the highest bacterial growth (19.3 ± 2.18 × 1010 CFU mL-1) and IAA production (10.7 μg mL-1). Consequently, the OTR value from the flask experiments was used to define the conditions for the operation of a 1 L stirred tank bioreactor. The growth and IAA production of B. circulans cultured in a bioreactor with PYM medium were higher (8 and 1.6 times, respectively) than those of bacteria cultured in Erlenmeyer flasks. IAA produced in a bioreactor by B. circulans was shown to induce the root system in Arabidopsis thaliana, similar to synthetic IAA. The results of this study demonstrate that PYM medium may be able to be used for the mass production of B. circulans E9 in bioreactors, increasing both bacterial growth and IAA production. This low-cost medium has the potential to be employed to grow other IAA-producing bacterial species.
Integration of auxin/Indole-3-Acetic Acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis
J Exp Bot 2017 Feb 1;68(5):1239-1249.PMID:28158805DOI:10.1093/jxb/erw508.
Plants have developed complex mechanisms to respond to salt stress, depending on secondary messenger-mediated stress perception and signal transduction. Nitric oxide (NO) is widely known as a 'jack-of-all-trades' in stress responses. However, NO-mediated crosstalk between plant hormones remains unclear. In this study, we found that salt stabilized both AUXIN/Indole-3-Acetic Acid 17 (Aux/IAA17) and RGA-LIKE3 (RGL3) proteins due to salt-induced NO production. Salt-induced NO overaccumulation and IAA17 overexpression decreased the transcripts of GA3ox genes, resulting in lower bioactive GA4. Further investigation showed that IAA17 directly interacted with RGL3 and increased its protein stability. Consistently, RGL3 stabilized IAA17 protein through inhibiting the interaction of TIR1 and IAA17 by competitively binding to IAA17. Moreover, both IAA17 and RGL3 conferred salt stress resistance. Overexpression of IAA17 and RGL3 partially alleviated the inhibitory effect of NO deficiency on salt resistance, whereas the iaa17 and rgl3 mutants displayed reduced responsiveness to NO-promoted salt resistance. Thus, the associations between IAA17 and gibberellin (GA) synthesis and signal transduction, and between the IAA17-interacting complex and the NO-mediated salt stress response were revealed based on physiological and genetic approaches. We conclude that integration of IAA17 and RGL3 is an essential component of NO-mediated salt stress response.
Indole-3-Acetic Acid production by newly isolated red yeast Rhodosporidium paludigenum
J Gen Appl Microbiol 2015;61(1):1-9.PMID:25833674DOI:10.2323/jgam.61.1.
Indole 3-acetic acid (IAA) is the principal hormone which regulates various developmental and physiological processes in plants. IAA production is considered as a key trait for supporting plant growth. Hence, in this study, production of Indole-3-Acetic Acid (IAA) by a basidiomycetous red yeast Rhodosporidium paludigenum DMKU-RP301 (AB920314) was investigated and improved by the optimization of the culture medium and culture conditions using one factor at a time (OFAT) and response surface methodology (RSM). The study considered the effects of incubation time, carbon and nitrogen sources, growth factor, tryptophan, temperature, shaking speed, NaCl and pH, on the production of IAA. The results showed that all the factors studied, except NaCl, affected IAA production by R. paludigenum DMKU-RP301. Maximum IAA production of 1,623.9 mg/l was obtained as a result of the studies using RSM. The optimal medium and growth conditions observed in this study resulted in an increase of IAA production by a factor of up to 5.0 compared to the unoptimized condition, i.e. when yeast extract peptone dextrose (YPD) broth supplemented with 0.1% l-tryptophan was used as the production medium. The production of IAA was then scaled up in a 2-l stirred tank fermenter, and the maximum IAA of 1,627.1 mg/l was obtained. This experiment indicated that the obtained optimal medium and condition (pH and temperature) from shaking flask production can be used for the production of IAA in a larger size production. In addition, the present research is the first to report on the optimization of IAA production by the yeast Rhodosporidium.
Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation
BMC Microbiol 2019 Apr 25;19(1):80.PMID:31023221DOI:10.1186/s12866-019-1450-6.
Background: The utilization of plant growth-promoting microbes is an environment friendly strategy to counteract stressful condition and encourage plants tolerance. In this regards, the current study was designed to isolate ACC deaminase and Indole-3-Acetic Acid (IAA) producing halotolerant bacteria to promote tomato (Solanum lycopersicum L.) growth and tolerance against salinity stress. Results: The selected bacterial isolate MO1 was identified as Leclercia adecarboxylata and IAA quantification results revealed that MO1 produced significant amount of IAA (9.815 ± 0.6293 μg mL- 1). The MO1 showed the presence of ACC (1-Aminocyclopropane-1-Carboxylate) deaminase responsible acdS gene and tolerance against salinity stress. A plant microbe interaction experiment using tomato (Solanum lycopersicum L.) with glycine betaine (GB) as a positive control was carried out to investigate the positive role MO1 in improving plant growth and stress tolerance. The results indicated that MO1 inoculation and GB application significantly increased growth attributes under normal as well as saline condition (120 mM NaCl). The MO1 inoculation and GB treatment approach conferred good protection against salinity stress by significantly improving glucose by 17.57 and 18.76%, sucrose by 34.2 and 12.49%, fructose by 19.9 and 10.9%, citric acid by 47.48 and 34.57%, malic acid by 52.19 and 28.38%, serine by 43.78 and 69.42%, glycine by 14.48 and 22.76%, methionine by 100 and 124.99%, threonine by 70 and 63.08%, and proline by 36.92 and 48.38%, respectively, while under normal conditions MO1 inoculation and GB treatment also enhanced glucose by 19.83 and 13.19%, sucrose by 23.43 and 15.75%, fructose by 15.79 and 8.18%, citric acid by 43.26 and 33.14%, malic acid by 36.18 and 14.48%, serine by 46.5 and 48.55%, glycine by 19.85 and 29.77%, methionine by 22.22 and 38.89%, threonine by 21.95 and 17.07%, and proline by 29.61 and 34.68% compared to levels in non-treated plants, respectively. In addition, the endogenous abscisic acid (ABA) level was noticeably lower in MO1-inoculated (30.28 and 30.04%) and GB-treated plants (45 and 35.35%) compared to their corresponding control plants under normal condition as well as salinity stress, respectively. Conclusion: The current findings suggest that the IAA- and ACC-deaminase-producing abilities MO1 can improve plants tolerance to salinity stress.
Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism
Plant Physiol Biochem 2018 Apr;125:74-84.PMID:29427890DOI:10.1016/j.plaphy.2018.01.026.
Salinity is one of major abiotic stresses affecting Brassica crop production. Here we present investigations into the physiological, biochemical, and hormonal components of the short-term salinity stress response in Chinese cabbage seedlings, with particular emphasis on the biosynthesis and metabolism of auxin Indole-3-Acetic Acid (IAA). Upon salinity treatments (50-200 mM NaCl) IAA level was elevated in a dose dependent manner reaching 1.6-fold increase at the most severe salt treatment in comparison to the control. IAA precursor profiling suggested that salinity activated the indole-3-acetamide and indole-3-acetaldoxime biosynthetic pathways while suppressing the indole-3-pyruvic acid pathway. Levels of the IAA catabolites 2-oxoindole-3-acetic acid and indole-3-acetic acid-aspartate increased 1.7- and 2.0-fold, respectively, under the most severe treatment, in parallel with those of IAA. Conversely, levels of the ester conjugate indole-3-acetyl-1-O-ß-d-glucose and its catabolite 2-oxoindole-3-acetyl-1-O-ß-d-glucose decreased 2.5- and 7.0-fold, respectively. The concentrations of stress hormones including jasmonic acid and jasmonoyl-isoleucine (JA and JA-Ile), salicylic acid (SA) and abscisic acid (ABA) confirmed the stress induced by salt treatment: levels of JA and JA-Ile increased strongly under the mildest treatment, ABA only increased under the most severe treatment, and SA levels decreased dose-dependently. These hormonal changes were related to the observed changes in biochemical stress markers upon salt treatments: reductions in seedling fresh weight and root growth, decreased photosynthesis rate, increased levels of reactive oxygen species, and elevated proline content and the Na+/K+ ratio. Correlations among auxin profile and biochemical stress markers were discussed based on Pearson's coefficients and principal component analysis (PCA).