Home>>Signaling Pathways>> Apoptosis>> TNF-α>>ISIS 104838

ISIS 104838 Sale

目录号 : GC64767

ISIS 104838是一种反义寡核苷酸药物,可减少肿瘤坏死因子 (TNF-alpha) 的产生。TNF-alpha 可以导致类风湿关节炎关节疼痛和肿胀。

ISIS 104838 Chemical Structure

Cas No.:250755-32-9

规格 价格 库存 购买数量
1 mg
¥4,500.00
现货
5 mg
¥9,900.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ISIS 104838 is an antisense oligonucleotide drug that reduces the production of tumor necrosis factor (TNF-alpha), a substance that contributes to joint pain and swelling in rheumatoid arthritis.

[1]. Sewell KL, Geary RS, Baker BF, et al. Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha. J Pharmacol Exp Ther. 2002;303(3):1334-1343.

Chemical Properties

Cas No. 250755-32-9 SDF Download SDF
分子式 分子量
溶解度 储存条件 4°C, away from moisture
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha

J Pharmacol Exp Ther 2002 Dec;303(3):1334-43.PMID:12438559DOI:10.1124/jpet.102.036749.

ISIS 104838 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that binds tumor necrosis factor-alpha (TNF-alpha) mRNA. It carries a 2'-methoxyethyl modification on the five 3' and 5' nucleotide sugars, with 10 central unmodified deoxynucleotides. ISIS 104838 was identified from a 264 ASO screen in phorbol myristate acetate-activated keratinocytes, and the dose response was assessed in lipopolysaccharide (LPS)-activated monocytes. Healthy males received multiple intravenous (i.v.) ISIS 104838 infusions in a placebo-controlled dose escalation trial (0.1-6 mg/kg). Additional volunteers received single or multiple subcutaneous (s.c.) injections. ISIS 104838 suppressed TNF-alpha protein by 85% in stimulated keratinocytes. The IC50 for TNF-alpha mRNA inhibition in stimulated monocytes was <1 microM. For i.v., C(max) occurred at the end of infusion. The effective plasma half-life was 15 to 45 min at 0.1 to 0.5 mg/kg and 1 to 1.8 h for higher doses. The apparent terminal plasma elimination half-life approximated 25 days. Obese subjects had higher plasma levels following equivalent mg/kg doses. For s.c. injections, C(max) occurred at 2 to 4 h and was lower than with equivalent i.v. dosing. Plasma bioavailability compared with i.v. was 82% following a 200 mg/ml s.c. injection. Transient activated partial thromboplastin time prolongation occurred after i.v. infusions and minimally after s.c. injections. Two subjects experienced rash, one a reversible platelet decrease, and mild injection site tenderness was noted. TNF-alpha production by peripheral blood leukocytes, induced ex vivo by LPS, was decreased by ISIS 104838 (p < 0.01). ISIS 104838, a second-generation antisense oligonucleotide, was generally well tolerated intravenously and subcutaneously. The pharmacokinetics support an infrequent dosing interval. Inhibition of TNF-alpha production ex vivo was demonstrated.

Investigation into the Mechanism(s) That Leads to Platelet Decreases in Cynomolgus Monkeys During Administration of ISIS 104838, a 2'-MOE-Modified Antisense Oligonucleotide

Toxicol Sci 2018 Aug 1;164(2):613-626.PMID:29846725DOI:10.1093/toxsci/kfy119.

ISIS 104838, a 2'-O-methoxyethyl (2'-MOE)-modified antisense oligonucleotide (ASO), causes a moderate, reproducible, dose-dependent, but selflimiting decrease in platelet (PLT) counts in monkeys and humans. To determine the etiology of PLT decrease in cynomolgus monkeys, a 12-week repeat dose toxicology study in 5 cynomolgus monkeys given subcutaneous injections of ISIS 104838 (30-60 mg/kg/week). Monkeys were also injected intravenously with 111Indium(In)-oxine-labeled PLTs to investigate PLT sequestration. In response to continued dosing, PLT counts were decreased by 50%-90% by day 30 in all monkeys. PLT decreases were accompanied by 2- to 4.5-fold increases in immunoglobulin M(IgM), which were typified by a 2- to 5-fold increase in antiplatelet factor 4 (antiPF4) IgM and antiPLT IgM, respectively. Monocyte chemotactic protein 1 increased upon dosing of ISIS 104838, concomitant with a 2- to 6-fold increase in monocyte-derived extracellular vesicles (EVs), indicating monocyte activation but not PLT activation. Despite a 2- to 3-fold increase in von Willebrand factor antigen in all monkeys following ASO administration, only 2 monkeys showed a 2- to 4-fold increase in endothelial EVs. Additionally, a ∼60 - 80%% increase in PLT sequestration in liver and spleen was also observed. Collectively, these results suggest the overall increase in total IgM, antiPLT IgM and/or antiPF4 IgM, in concert with monocyte activation contributed to increased PLT sequestration in spleen and liver, leading to decreased PLTs in peripheral blood.

Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2'-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species

Drug Metab Dispos 2003 Nov;31(11):1419-28.PMID:14570775DOI:10.1124/dmd.31.11.1419.

The pharmacokinetics of a 2'-O-(2-methoxyethyl)-ribose modified phosphorothioate oligonucleotide, ISIS 104838 (human tumor necrosis factor-alpha antisense), have been characterized in mouse, rat, dog, monkey, and human. Plasma pharmacokinetics after i.v. administration exhibited relatively rapid distribution from plasma to tissues with a distribution half-life estimated from approximately 15 to 45 min in all species. Absorption after s.c. injection was high (80-100%), and absorption after intrajejunal administration in proprietary formulations was as high as 10% bioavailability compared with i.v. administration. Urinary excretion of the parent drug was low, with less than 1% of the administered dose excreted in urine after i.v. infusion in monkeys at clinically relevant doses (< or = 5 mg/kg). ISIS 104838 is highly bound to plasma proteins, likely preventing renal filtration. However, shortened oligonucleotide metabolites of ISIS 104838 lose their affinity to bind plasma proteins. Thus, excretion of radiolabel (mostly as metabolites) in urine (75%) and feces (5-10%) was nearly complete by 90 days. Elimination of ISIS 104838 from tissue was slow (multiple days) for all species, depending on the tissue or organ. The highest concentrations of ISIS 104838 in tissues were seen in kidney, liver, lymph nodes, bone marrow, and spleen. In general, concentrations of ISIS 104838 were higher in monkey tissues than in rodents at body weight-equivalent doses. Plasma pharmacokinetics scale well across species as a function of body weight alone. This favorable pharmacokinetic profile for ISIS 104838 provides guidance for clinical development and appears to support infrequent and convenient dose administration.

Oral bioavailability and multiple dose tolerability of an antisense oligonucleotide tablet formulated with sodium caprate

J Pharm Sci 2004 Jun;93(6):1431-9.PMID:15124202DOI:10.1002/jps.20051.

In vivo study was performed to determine the tolerability and pharmacokinetics of ISIS 104838, a phosphorothioate antisense oligonucleotide targetting human tumour necrosis factor alpha (TNF-alpha) mRNA, following multi-dose administration via intravenous and oral routes. Oral tablet formulations of ISIS 104838 were pre-formulated with the permeation enhancer, sodium caprate, in an enteric-coated solid dosage form. The average plasma bioavailability of ISIS 104838 was 1.4% relative to IV. The tissue distribution profile was similar following both routes of administration, with highest concentrations observed in the kidney followed by the liver, lymph nodes and spleen. Plasma bioavailability underestimated the tissue accumulation of ISIS 104838 observed 1 day after the last dose. Mean systemic tissue bioavailability ranged from 2.0 to 4.3%, relative to IV tissues, and was dependent on tissue type. No marked differences were noted in the pharmacokinetic parameters following multi-dosing either via intravenous or oral routes. All formulations administered were well tolerated. This paper reports the first evaluation of solid oral dosage forms comprising sodium caprate and an antisense oligonucleotide. Furthermore, this study demonstrates the oral delivery of ISIS 104838 from solid oral dose formulations, with the achievement of comparable tissue concentrations of the oligonucleotide to that of the intravenous treatment.

In vitro metabolic stabilities and metabolism of 2'-O-(methoxyethyl) partially modified phosphorothioate antisense oligonucleotides in preincubated rat or human whole liver homogenates

Oligonucleotides 2010 Dec;20(6):309-16.PMID:21117960DOI:10.1089/oli.2010.0252.

In vitro metabolic stability testing of phosphorothioate 2'-O-methoxyethyl (2'-MOE) partially modified antisense oligonucleotides (ASOs) is not routinely performed to help screen discovery compounds (eg, predict in vivo half-lives), as no suitable in vitro test system currently exists. The aims of this work were to develop, optimize, and evaluate an in vitro whole liver homogenate (rat or human) test system. The test system was used to evaluate in vitro metabolic stabilities (intrinsic clearance) of selected ASOs, with results compared to reported in vivo half-lives, and generated metabolites also identified. Test system optimization involved preincubating whole liver homogenates at 37°C for ≥24 hours, which increased in vitro ASO metabolism rate. From calculated in vitro intrinsic clearance (CL(int)) values in preincubated rat or human whole liver homogenates, metabolic stabilities of fully phosphorothioated 2'-MOE ASOs (ISIS 104838 and ISIS 301012) were, as expected, greater (ie, lower CL(int)) than a 2'-MOE ASO containing a single phosphodiester substitution (ISIS 104838PO10). However, comparable-to-lower in vitro metabolic stability for ISIS 301012 was seen compared to ISIS 104838, in contrast to reported ∼2-fold longer in vivo tissue elimination half-lives for ISIS 301012. Identified in vitro metabolic products of ISIS 301012 were consistent with previously reported in vivo observations.