Home>>Signaling Pathways>> Cancer Biology>> Tumor Microenvironment>>Jacaric Acid

Jacaric Acid Sale

(Synonyms: 8(Z),10(E),12(Z)-Octadecatrienoic Acid) 目录号 : GC41645

A conjugated PUFA

Jacaric Acid Chemical Structure

Cas No.:28872-28-8

规格 价格 库存 购买数量
1mg
¥1,696.00
现货
5mg
¥7,641.00
现货
10mg
¥13,568.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Jacaric acid is a conjugated polyunsaturated fatty acid first isolated from seeds of Jacaranda plants. Structurally, it is an 18-carbon ω-6 triene isomer of γ-linolenic acid . Jacaric acid induces cell cycle arrest and apoptosis in a variety of cancer cell lines (GI50 = 1-5 µM). It increases the production of reactive oxygen species, and cytotoxicity is abolished by the antioxidant α-tocopherol, suggesting that apoptosis results from oxidative stress. Jacaric acid is metabolized in vivo to conjugated linoleic acid , which is also cytotoxic to cancer cells. Jacaric acid inhibits cyclooxygenase-1 in vitro (Ki = 1.7 µM) and, with long term feeding, decreases stearoyl-CoA desaturase expression and activity in mice.

Chemical Properties

Cas No. 28872-28-8 SDF
别名 8(Z),10(E),12(Z)-Octadecatrienoic Acid
Canonical SMILES CCCCC/C=C\C=C\C=C/CCCCCCC(O)=O
分子式 C18H30O2 分子量 278.4
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,Ethanol: 100 mg/ml,Ethanol:PBS(pH 7.2) (1:1): 0.5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.592 mL 17.9598 mL 35.9195 mL
5 mM 0.7184 mL 3.592 mL 7.1839 mL
10 mM 0.3592 mL 1.796 mL 3.592 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Jacaric Acid inhibits the growth of murine macrophage-like leukemia PU5-1.8 cells by inducing cell cycle arrest and apoptosis

Cancer Cell Int 2015 Sep 29;15:90.PMID:26421001DOI:10.1186/s12935-015-0246-5.

Background: Conjugated linolenic acids (CLN) refer to the positional and geometric isomers of octadecatrienoic acids with three conjugated double bonds (C18:3). Previous researches have demonstrated that CLN can inhibit the growth of a wide variety of cancer cells, whereas the modulatory effect of CLN on various myeloid leukemia cells remains unclear. This study aims at demonstrating the in vitro anti-tumor effect and action mechanisms of Jacaric Acid, a CLN isomer which is present in jacaranda seed oil, on the murine macrophage-like leukemia PU5-1.8 cells. Methods and results: It was found that Jacaric Acid inhibited the proliferation of PU5-1.8 cells in a time- and concentration-dependent manner, as determined by the MTT reduction assay and by using CyQUANT(®) NF Cell Proliferation Assay Kit, while it exerted minimal cytotoxicity on normal murine cells. Besides, the reactive oxygen species production in jacaric acid-treated PU5-1.8 cells was elevated in a concentration-dependent mannar. Flow cytometric analysis revealed the induction of G0/G1 cell cycle arrest, accompanied by a decrease in CDK2 and cyclin E proteins. Jacaric Acid also triggered apoptosis as reflected by induction of DNA fragmentation, phosphatidylserine externalization, mitochondrial membrane depolarization, up-regulation of pro-apoptotic Bax protein and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins. Conclusions: Our results demonstrated the growth-inhibitory effect of Jacaric Acid on PU5-1.8 cells through inducing cell cycle arrest and apoptosis, while exhibiting minimal cytotoxicity to normal murine cells. Therefore, Jacaric Acid is a potential candidate for the treatment of some forms of myeloid leukemia with minimal toxicity and fewer side effects.

Jacaric Acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice

J Oleo Sci 2012;61(8):433-41.PMID:22864514DOI:10.5650/jos.61.433.

Conjugated fatty acid is a collective term used for fatty acids with conjugated double bond systems. Seed oils from certain plants include conjugated linolenic acids, which have a conjugated triene system and are geometrical and positional isomers of α-linolenic acid. One of these isomers, Jacaric Acid (JA, 8c, 10t, 12c-18:3), has not been examined widely. Therefore, we investigated the absorption and metabolism of JA in normal animals (ICR mice). An oral dose of JA of 5 mg/day for 1 week had no effects on body weight, food intake and tissue weight of mice. JA was detected in the serum, kidney, liver, lung and epididymal white adipose tissue. Analysis of the fatty acid composition in liver and white adipose tissue showed a tendency to increase levels of saturated fatty acids (SFAs) such as palmitic acid (16:0) and stearic acid (18:0) and to decrease levels of monounsaturated fatty acids (MUFAs) such as palmitoleic acid (16:1) and oleic acid (18:1). Thus, JA treatment decreased the desaturation index (16:1/16:0, 18:1/18:0) in liver and white adipose tissue. This index is used as an indicator of the activity of stearoyl coenzyme A desaturase (SCD), an endoplasmic reticulum enzyme that catalyzes the biosynthesis of MUFAs from SFAs. The change in this index indicates that JA inhibited SCD activity in ICR mice, and further experiments showed that JA also decreased the expression level of SCD-1 mRNA. Inhibition of SCD activity may have anti-obesity and anti-diabetes effects, and therefore the findings in this study suggest that JA may be effective for preventing obesity and diabetes.

Jacaric Acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure-activity study

Phytomedicine 2013 Jun 15;20(8-9):734-42.PMID:23453308DOI:10.1016/j.phymed.2013.01.012.

Plant-derived non-essential fatty acids are important dietary nutrients, and some are purported to have chemopreventive properties against various cancers, including that of the prostate. In this study, we determined the ability of seven dietary C-18 fatty acids to cause cytotoxicity and induce apoptosis in various types of human prostate cancer cells. These fatty acids included jacaric and punicic acid found in jacaranda and pomegranate seed oil, respectively, three octadecatrienoic geometric isomers (alpha- and beta-calendic and catalpic acid) and two mono-unsaturated C-18 fatty acids (trans- and cis-vaccenic acid). Jacaric Acid and four of its octadecatrienoic geoisomers selectively induced apoptosis in hormone-dependent (LNCaP) and -independent (PC-3) human prostate cancer cells, whilst not affecting the viability of normal human prostate epithelial cells (RWPE-1). Jacaric Acid induced concentration- and time-depedent LNCaP cell death through activation of intrinsic and extrinsic apoptotic pathways resulting in cleavage of PARP-1, modulation of pro- and antiapoptotic Bcl-2 family of proteins and increased cleavage of caspase-3, -8 and -9. Moreover, activation of a cell death-inducing signalling cascade involving death receptor 5 was observed. Jacaric Acid induced apoptosis in PC-3 cells by activation of the intrinsic pathway only. The spatial conformation cis, trans, cis of jacaric and punicic acid was shown to play a key role in the increased potency and efficacy of these two fatty acids in comparison to the five other C-18 fatty acids tested. Three-dimensional conformational analysis using the PubChem Database (http://pubchem.ncbi.nlm.nih.gov) showed that the cytotoxic potency of the C-18 fatty acids was related to their degree of conformational similarity to our cytotoxic reference compound, punicic acid, based on optimized shape (ST) and feature (CT) similarity scores, with Jacaric Acid being most 'biosimilar' (ST(ST-opt)=0.81; CT(CT-opt)=0.45). This 3-D analysis of structural similarity enabled us to rank geoisomeric fatty acids according to cytotoxic potency, whereas a 2-D positional assessment of cis/trans structure did not. Our findings provide mechanistic evidence that nutrition-derived non-essential fatty acids have chemopreventive biological activities and Exhibit 3-D structure-activity relationships that could be exploited to develop new strategies for the prevention or treatment of prostate cancer regardless of hormone dependency.

The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

PLoS One 2015 Dec 2;10(12):e0143684.PMID:26629697DOI:10.1371/journal.pone.0143684.

This study aims at demonstrating the immunomodulatory property of Jacaric Acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that Jacaric Acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that Jacaric Acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, Jacaric Acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

Jacaric Acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo

Biochim Biophys Acta 2012 Jul;1821(7):980-8.PMID:22521763DOI:10.1016/j.bbalip.2012.04.001.

In this study, we compared the cytotoxic effects of natural conjugated linolenic acids (CLnAs) on human adenocarcinoma cells (DLD-1) in vitro, with the goal of finding CLnA isomers with strong cytotoxic effects. The antitumor effect of the CLnA with the strongest cytotoxic effect was then examined in mice. The results showed that all CLnA isomers have strong cytotoxic effects on DLD-1 cells, with Jacaric Acid (JA) having the strongest effect. Examination of the mechanism of cell death showed that CLnAs induce apoptosis in DLD-1 cells via lipid peroxidation. The intracellular levels of incorporated CLnAs were measured to examine the reason for differences in cytotoxic effects. These results showed that JA was taken into cells efficiently. Collectively, these results suggest that the cytotoxic effect of CLnAs is dependent on intracellular incorporation and induction of apoptosis via lipid peroxidation. JA also had a strong preventive antitumor effect in vivo in nude mice into which DLD-1 cells were transplanted. These results suggest that JA can be used as a dietary constituent for prevention of cancer.