Jatrorrhizine (chloride)
(Synonyms: 盐酸药根碱) 目录号 : GC43926An alkaloid with diverse biological activities
Cas No.:6681-15-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Jatrorrhizine is an alkaloid that has been found in the Chinese herb C. chinensis and has diverse biological activities. It is active against P. falciparum (IC50s = 422 and 1,607 ng/ml for D-6 and W-2 clones, respectively) and E. histolytica (IC50 = 82.7 μM). Jatrorrhizine inhibits the growth of C8161 human melanoma cells in vitro (IC50 = 47.4 μM) and inhibits C8161 cell-mediated neovascularization in a Matrigel™ plug assay in mice when administered at a dose of 50 μg/animal. It reduces serum levels of triglycerides, LDL cholesterol (LDL-C), aspartate transaminase (AST), and alanine aminotransferase (ALT) in a high-fat diet-induced mouse model of hyperlipidemia when administered at doses of 20 and 100 mg/kg. Jatrorrhizine is also a metabolite of berberine .
Cas No. | 6681-15-8 | SDF | |
别名 | 盐酸药根碱 | ||
Canonical SMILES | COC1=CC=C2C(C=[N+](CCC3=C4C=C(OC)C(O)=C3)C4=C2)=C1OC.[Cl-] | ||
分子式 | C20H20NO4•Cl | 分子量 | 373.8 |
溶解度 | DMF: 0.1 mg/ml | 储存条件 | Store at -20°C,protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6752 mL | 13.3761 mL | 26.7523 mL |
5 mM | 0.535 mL | 2.6752 mL | 5.3505 mL |
10 mM | 0.2675 mL | 1.3376 mL | 2.6752 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Jatrorrhizine: a review of its pharmacological effects
J Pharm Pharmacol 2021 Apr 27;73(6):709-719.PMID:33822109DOI:10.1093/jpp/rgaa065.
Objectives: Jatrorrhizine is an isoquinoline alkaloid found in medicinal plants. It is the main bioactive compound of the Chinese herbs, Coptis chinensis, Rhizoma coptidis, and Phellodendron chinense Schneid, plants that are predominantly used in traditional Chinese medicine (TCM) for the treatment of metabolic disorders, gastritis, stomachache among a host of others. This manuscript aims to provide a comprehensive review of the pharmacological effects of Jatrorrhizine, proffer suggestions on research areas that need redress and potentially serve as a reference for future studies. Key findings: Published scientific literature was therefore retrieved from all credible sources including Pubmed, Elsevier, Research Gate, Web of Science, Google Scholar, Science Direct, Europe PMC and Wiley Online library using key words such as 'Jatrorrhizine', 'botanical sources', 'pharmacology', 'toxicology', 'pharmacokinetics' or their combinations. A cursory examination of relevant scientific literature using the aforementioned key words produced more than 400 publications. Conclusions: Using an inclusion/exclusion criteria the subject matter of this review was adequately addressed. It is our hope that this review will provide a good platform for further research on fully harnessing the potential of this bioactive compound.
Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity
Front Pharmacol 2022 Jan 13;12:783127.PMID:35095493DOI:10.3389/fphar.2021.783127.
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of Jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving "Jatrorrhizine", "sources", "pharmacology," "pharmacokinetics," and "toxicology". Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of Jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of Jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of Jatrorrhizine with other pharmaceuticals and development of derivatives.
Kuijieyuan Decoction Improved Intestinal Barrier Injury of Ulcerative Colitis by Affecting TLR4-Dependent PI3K/AKT/NF-κB Oxidative and Inflammatory Signaling and Gut Microbiota
Front Pharmacol 2020 Jul 29;11:1036.PMID:32848725DOI:10.3389/fphar.2020.01036.
Ethnopharmacological relevance: In Traditional Chinese medicine (TCM) theory, ulcerative colitis (UC) is associated with damp-heat, blood stasis, and intestinal vascular ischemia. Kuijieyuan decoction (KD) is a traditional Chinese medicine based on the above theory and used clinically to alleviate UC injury. Methods: The main components of KD were analyzed by using high-pressure liquid chromatography (HPLC) and confirmed by UPLC-MS/MS. A UC model was established in rats by using dextran sulfate sodium (DSS) and dead rats (caused by DSS) were excluded from the study. Forty-eight rats were divided into 6 groups, health control (CG), UC model (UG), sulfasalazine (SG), low-dose KD (LG), middle-dose KD (MG), and high-dose KD (HG) groups. UC damage was assessed by hematoxylin and eosin staining and scan electron microscopy. We measured Toll-like receptor 4 (TLR4), p-phosphatidylinositol 3-kinase (PI3K), PI3K, p-Protein kinase B (AKT), AKT, p-nuclear factor kappa B (NF-κB), NF-κB, oxidative stress marker (superoxidase dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), and malondialdehyde) and inflammatory markers (tumor necrosis factor α (TNFα), interleukin (IL)-1, IL-6 and IL-10) in UC tissues. Gut microbiota was analyzed through16S rRNA sequencing. Results: The main components of KD consist of gallic acid, paeoniflorin, emodin, berberine, coptisine, palmatine, Jatrorrhizine, baicalein and baicalin. The UC model was successfully established by causing intestinal barrier injury with the loss of intestinal villi and destructed mitochondria of intestinal epithelial cells. Both sulfasalazine and KD treatment repaired UC injury, reduced the levels of malondialdehyde, TNFα, IL-1, IL-6, TLR4, p-PI3K, p-AKT, and p-NF-κB, and increased the levels of SOD, GPx, CAT, and IL-10. KD showed a protective function for the UC model in a dose-dependent way. The serum levels of paeoniflorin and baicalin had a strong relationship with the levels of inflammatory and oxidative stress biomarkers. KD treatment increased the proportion of Alloprevotella, Treponema, Prevotellaceae, and Prevotella, and reduced the proportion of Escherichia_Shigella and Desulfovibrio in gut microbiota. Conclusions: KD improved intestinal barrier injury of ulcerative colitis, antioxidant and anti-inflammatory properties by affecting TLR4-dependent PI3K/AKT/NF-κB signaling possibly through the combination of its main compounds, and improving gut microbiota.
Network pharmacology and pharmacokinetics integrated strategy to investigate the pharmacological mechanism of Xianglian pill on ulcerative colitis
Phytomedicine 2021 Feb;82:153458.PMID:33486267DOI:10.1016/j.phymed.2020.153458.
Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease with high morbidity, which leads to poor quality of life. The Xianglian pill (XLP) is a classical Chinese patent medicine and has been clinically proven to be an effective treatment for UC. Purpose: The pharmacological mechanism of the key bioactive ingredients of XLP for the treatment of UC was investigated by a network pharmacology and pharmacokinetics integrated strategy. Study design and methods: Network pharmacology was used to analyze the treatment effect of nine quantified XLP ingredients on UC. Key pathways were enriched and analyzed by protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses. The effect of XLP on Th17 cell differentiation was validated using a mouse model of UC. The binding of nine compounds with JAk2, STAT3, HIF-1α, and HSP90AB1 was assessed using molecular docking. A simple and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantification of nine ingredients from XLP in plasma and applied to a pharmacokinetic study following oral administration. Results: Nine compounds of XLP, including coptisine, berberine, magnoflorine,berberrubine, Jatrorrhizine, palmatine, evodiamine, rutaecarpine, and dehydrocostus lactone, were detected. Network pharmacology revealed 50 crossover genes between the nine compoundsand UC. XLP treats UC mainly by regulating key pathways of the immune system, including Th17 cell differentiation, Jak-Stat, and PI3K-Akt signaling pathways. An in vivo validation in mice found that XLP inhibits Th17 cell differentiation by suppressing the Jak2-Stat3 pathway, which alleviates mucosal inflammation in UC. Molecular docking confirmed that eight compounds are capable of binding with JAk2, HIF-1α, and HSP90AB1, further confirming the inhibitory effect of XLP on the Jak2-Stat3 pathway. Moreover, apharmacokinetic study revealed that the nine ingredients of XLP are exposed in the plasma and colon tissue, which demonstrates its pharmacological effect on UC. Conclusion: This study evaluates the clinical treatment efficacy of XLP for UC. The network pharmacology and pharmacokinetics integrated strategy evaluation paradigm is efficient in discovering the key pharmacological mechanism of herbal formulae.
Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers
Front Pharmacol 2022 Jan 3;12:775084.PMID:35046810DOI:10.3389/fphar.2021.775084.
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, Jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.