Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> AMPAR>>JNJ-55511118

JNJ-55511118 Sale

目录号 : GC45989

A negative modulator of AMPA receptors containing TARP-γ8

JNJ-55511118 Chemical Structure

Cas No.:2036081-86-2

规格 价格 库存 购买数量
1mg
¥428.00
现货
5mg
¥1,284.00
现货
10mg
¥2,365.00
现货
25mg
¥5,362.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

JNJ-55511118 is a negative modulator of AMPA receptors containing transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8).1 It inhibits glutamate-induced calcium flux in HEK293F cells co-transfected with TARP-γ8 and either GluA1o, GluA1i, GluA2i, GluA3o, or GluA4o (IC50s = 11.22, 12.3, 7.41, 38.02, and 15.85 nM, respectively). JNJ-55511118 is selective for GluA1o receptors containing TARP-γ8 over GluA1o receptors containing TARP-γ2, -γ3, -γ4, or -γ7 (IC50s = >10 μM for all). It reduces peak glutamate-induced currents in acutely dissociated murine hippocampal neurons to 60.7% of control cells when used at a concentration of 1 μM. JNJ-55511118 (1 μM) reduces field excitatory postsynaptic potentials (fEPSPs) in the hippocampal CA1 region from wild-type, but not TARP-γ8 knockout, mice. It also inhibits corneal kindling-induced seizures in mice (ED50 = 3.7 mg/kg).

|1. Maher, M.P., Wu, N., Ravula, S., et al. Discovery and characterization of AMPA receptor modulators selective for TARP-γ8. J. Pharmacol. Exp. Ther. 357(2), 394-414 (2016).

Chemical Properties

Cas No. 2036081-86-2 SDF
Canonical SMILES ClC1=C(C2=CC(NC(N3)=O)=C3C=C2)C(OC(F)(F)F)=CC=C1
分子式 C14H8ClF3N2O2 分子量 328.7
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.0423 mL 15.2114 mL 30.4229 mL
5 mM 0.6085 mL 3.0423 mL 6.0846 mL
10 mM 0.3042 mL 1.5211 mL 3.0423 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Influence of the TARP γ8-Selective Negative Allosteric Modulator JNJ-55511118 on AMPA Receptor Gating and Channel Conductance

Mol Pharmacol 2022 May;101(5):343-356.PMID:35246481DOI:10.1124/molpharm.121.000473.

AMPA-type gultamate receptors (AMPARs) mediate excitatory signaling in the brain and are therapeutic targets for the treatment of diverse neurological disorders. The receptors interact with a variety of auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). The TARPs influence AMPAR biosynthesis and trafficking and enhance receptor responses by slowing desensitization and deactivation and increasing single-channel conductance. TARP γ8 has an expression pattern that is distinct from that of other TARPs, being enriched in the hippocampus. Recently, several compounds have been identified that selectivity inhibit γ8-containing AMPARs. One such inhibitor, JNJ-55511118, has shown considerable promise for the treatment of epilepsy. However, key details of its mechanism of action are still lacking. Here, using patch-clamp electrophysiological recording from heterologously expressed AMPARs, we show that JNJ-55511118 inhibits peak currents of γ8-containing AMPARs by decreasing their single-channel conductance. The drug also modifies hallmark features of AMPAR pharmacology, including the TARP-dependent actions of intracellular polyamines and the partial agonist kainate. Moreover, we find that JNJ-55511118 reduces the influence of γ8 on all biophysical measures, aside from its effect on the recovery from desensitization. The drug is also effective when applied intracellularly, suggesting it may access its binding site from within the membrane. Additionally, we find that AMPARs incorporating TARP γ2 mutated to contain the JNJ-55511118 binding site, exhibit greater block than seen with AMPARs containing γ8, potentially reflecting differences in TARP stoichiometry. Taken together, our data provide new insight into the mechanism by which γ8-selective drugs inhibit AMPARs. SIGNIFICANCE STATEMENT: Although modulation of AMPA-type glutamate receptors shows promise for the treatment various neurological conditions, the absence of subtype-selective drugs has hindered adoption of this therapeutic strategy. We made patch-clamp recordings to characterize the actions of the γ8-selective AMPAR inhibitor JNJ-55511118 on GluA2(Q) receptors expressed in HEK cells. We report that JNJ-55511118 inhibits AMPAR-mediated currents by reducing single-channel conductance, providing clear insight into the mechanism of action of this important class of AMPAR modulators.

Inhibition of AMPA receptors (AMPARs) containing transmembrane AMPAR regulatory protein γ-8 with JNJ-55511118 shows preclinical efficacy in reducing chronic repetitive alcohol self-administration

Alcohol Clin Exp Res 2021 Jul;45(7):1424-1435.PMID:34086361DOI:10.1111/acer.14639.

Background: A prominent therapeutic indication for alcohol use disorder (AUD) is reduction in chronic repetitive alcohol use. Glutamate α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) regulate chronic alcohol self-administration in preclinical models. Recent evidence indicates that the expression and function of AMPARs require the transmembrane AMPAR regulatory protein γ-8 (TARP γ-8). This study evaluated the preclinical efficacy of JNJ-55511118, a novel, selective, high-affinity inhibitor of TARP γ-8-bound AMPARs, in reducing chronic operant alcohol self-administration. Methods: Separate groups of male and female C57BL/6J mice (n = 8/sex/group) were trained to lever press for sweetened alcohol (9% v/v + sucrose 2% w/v) or sucrose only (2% w/v) in operant conditioning chambers using an FR-4 schedule of reinforcement. After a 40-day baseline, JNJ-55511118 (0, 1, and 10 mg/kg, p.o.) was administered in randomized order 1 h before self-administration sessions. Parameters of operant behavior including response rate, total reinforcers, and head entries in the drinking troughs were computer recorded. Results: During baseline, responding to alcohol, but not sucrose, was greater in female than male mice. In male mice, both doses of JNJ-55511118 decreased multiple parameters of alcohol self-administration but did not reduce behavior-matched sucrose-only self-administration. JNJ-55511118 had no effect on sweetened alcohol or sucrose self-administration in female mice. Subsequent tests of motor function showed that the lowest effective dose of JNJ-55511118 (1 mg/kg) had no effect on open-field activity in male mice. Conclusions: This study shows for the first time that TARP γ-8-bound AMPARs regulate a behavioral pathology associated with addiction. The preclinical efficacy of JNJ-55511118 in reducing alcohol self-administration in male mice suggests that inhibition of TARP γ-8-bound AMPARs is a novel and highly significant neural target for developing medications to treat AUD and other forms of addiction.

Imaging of Transmembrane AMPA Receptor Regulatory Proteins by Positron Emission Tomography

J Med Chem 2022 Jul 14;65(13):9144-9158.PMID:35762919DOI:10.1021/acs.jmedchem.2c00377.

The transmembrane α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory protein γ-8 (TARP γ-8) constitutes an auxiliary subunit of AMPA receptors, which mediates various brain functions including learning and memory. TARP γ-8 has emerged as a promising therapeutic target for central nervous system disorders. Despite considerable efforts, previously reported TARP γ-8 PET radioligands, such as [11C]TARP-1903 and [11C]TARP-1811 series, were plagued by limited brain uptake and/or high nonspecific binding in vivo. Herein, we developed two novel 11C-labeled probes, [11C]8 and [11C]15 (also named as [11C]TARP-2105), of which the latter exhibited a reasonable brain uptake as well as specific binding toward TARP γ-8 both in vitro and in vivo, as confirmed by blocking experiments with the commercially available TARP γ-8 inhibitor, JNJ-55511118 in the TARP γ-8-rich hippocampus. Overall, [11C]15 exhibited promising tracer characteristics and proved to be a lead positron-emission tomography ligand for the non-invasive quantification of TARP γ-8 in the mammalian brain.

Discovery and Characterization of AMPA Receptor Modulators Selective for TARP-γ8

J Pharmacol Exp Ther 2016 May;357(2):394-414.PMID:26989142DOI:10.1124/jpet.115.231712.

Members of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel. One of the molecules, 5-[2-chloro-6-(trifluoromethoxy)phenyl]-1,3-dihydrobenzimidazol-2-one (JNJ-55511118), had excellent pharmacokinetic properties and achieved high receptor occupancy following oral administration. This molecule showed strong, dose-dependent inhibition of neurotransmission within the hippocampus, and a strong anticonvulsant effect. At high levels of receptor occupancy in rodent in vivo models, JNJ-55511118 showed a strong reduction in certain bands on electroencephalogram, transient hyperlocomotion, no motor impairment on rotarod, and a mild impairment in learning and memory. JNJ-55511118 is a novel tool for reversible AMPA receptor inhibition, particularly within the hippocampus, with potential therapeutic utility as an anticonvulsant or neuroprotectant. The existence of a molecule with this mechanism of action demonstrates the possibility of pharmacological targeting of accessory proteins, increasing the potential number of druggable targets.

Characterizing the binding and function of TARP γ8-selective AMPA receptor modulators

J Biol Chem 2020 Oct 23;295(43):14565-14577.PMID:32747446DOI:10.1074/jbc.RA120.014135.

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA)-type glutamate receptors (AMPARs) are the predominant excitatory neurotransmitter receptors in the brain, where they mediate synaptic transmission and plasticity. Excessive AMPAR activation leads to diseases such as epilepsy. AMPAR properties are modulated by auxiliary proteins and foremost by the transmembrane AMPAR regulatory proteins (TARPs). These distribute in unique expression patterns across the brain, rendering AMPAR/TARP complexes promising targets for region-specific therapeutic intervention. TARP γ8 is predominantly expressed in the forebrain and is enriched in the hippocampus, a region associated with temporal lobe epilepsy. Recent high-throughput medicinal chemistry screens have identified multiple promising compounds that selectively target AMPARs associated with γ8 and hold promise for epilepsy treatment. However, how these modulators target the receptor complex is currently unknown. Here, we use a combination of ligand docking, molecular dynamics simulations, and electrophysiology to address this question. We identify a conserved oxindole isostere, shared between three structurally diverse modulators (LY-3130481, JNJ-55511118, and JNJ-61432059) as the major module engaging γ8 by an H-bond to Asn-172 (γ8). The remaining variable region of each molecule likely targets the receptor complex in ligand-selective modes. Functional data reveal parallels in the underlying modulatory action of two prominent compounds. This work will aid development of refined AMPAR epilepsy therapeutics and facilitate to uncover the mechanisms by which TARPs modulate the receptor.