Home>>Proteins>> Enzymes>> Cathepsin>>K777

K777 Sale

(Synonyms: APC-3316, CRA-3316, K11777, MePip-Phe-hPhe-VSφ) 目录号 : GC60212

A cysteine protease inhibitor

K777 Chemical Structure

Cas No.:233277-99-1

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,934.00
现货
1mg
¥693.00
现货
5mg
¥1,530.00
现货
10mg
¥2,340.00
现货
25mg
¥4,140.00
现货
50mg
¥5,760.00
现货
100mg
¥7,920.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

K777 is a cysteine protease inhibitor.1 It inhibits human cathepsin S (Ki = 0.002 ?M) and human cathepsin L (Ki = 0.05 ?M), which cleaves the severe acute respiratory coronavirus 2 (SARS-CoV-2) spike glycoprotein, also known as the surface glycoprotein. K777 is selective for these proteases over human cathepsin K, -B, and -C (Kis = 0.4, 3, >100 ?M, respectively), as well as the SARS-CoV-2 cysteine proteases papain-like protease (PLpro) and main protease (Mpro), also known as the 3C-like protease (3CLpro; Kis = >100 ?M for both). It prevents cleavage of the spike protein S1 subunit in vitro and reduces the cytopathic effect of SARS-CoV-2 in infected Vero E6, HeLa/ACE2, and A549/ACE2 cells (EC50s = <0.074, 0.004, and <0.080 ?M, respectively). K777 induces mortality in T. b. brucei trypanosomes (IC50 = 0.1 ?M) and reduces myocardial damage in a canine model of T. cruzi infection when administered at a dose of 50 mg/kg twice per day.2,3 It also inhibits chemokine (C-C motif) ligand 17 (CCL17) binding to, and CCL17-induced chemotaxis of, HuT 78 cells (IC50s = 0.057 and 0.0089 ?M, respectively), as well as induces chemokine (C-C motif) receptor 4 (CCR4) internalization.4

1.Mellott, D.M., Tseng, C.-T., Drelich, A., et al.A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cellsACS Chem. Biol.16(4)642-650(2021) 2.Troeberg, L., Morty, R.E., Pike, R.N., et al.Cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei bruceiExp. Parasitol.91(4)349-355(1999) 3.Barr, S.C., Warner, K.L., Kornreic, B.G., et al.A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruziAntimicrob. Agents Chemother.49(12)5160-5161(2005) 4.Sato, T., Iwase, M., Miyama, M., et al.Internalization of CCR4 and inhibition of chemotaxis by K777, a potent and selective CCR4 antagonistPharmacology91(5-6)305-313(2013)

Chemical Properties

Cas No. 233277-99-1 SDF
别名 APC-3316, CRA-3316, K11777, MePip-Phe-hPhe-VSφ
Canonical SMILES O=C(N1CCN(C)CC1)N[C@@H](CC2=CC=CC=C2)C(N[C@@H](CCC3=CC=CC=C3)/C=C/S(=O)(C4=CC=CC=C4)=O)=O
分子式 C32H38N4O4S 分子量 574.73
溶解度 储存条件
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7399 mL 8.6997 mL 17.3995 mL
5 mM 0.348 mL 1.7399 mL 3.4799 mL
10 mM 0.174 mL 0.87 mL 1.7399 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Internalization of CCR4 and inhibition of chemotaxis by K777, a potent and selective CCR4 antagonist

Pharmacology 2013;91(5-6):305-13.PMID:23751403DOI:10.1159/000350390.

CC chemokine receptor 4 (CCR4) is a G protein-coupled receptor that regulates the chemotaxis of Th2 lymphocytes, which are key players in allergic diseases. K777 is a small compound identified in a binding assay using a CCR4 ligand, CCL17. K777 inhibited both CCL17 binding and CCL17-induced chemotaxis in Hut78 cells (IC50: 57 and 8.9 nmol/l, respectively). The K777-mediated inhibition of chemotaxis was potent even in the presence of a 10-fold higher concentration of CCL17. The imaging and flow cytometric analyses revealed that K777 induced CCR4 internalization, with a ∼50% reduction of cell surface CCR4. K777 did not inhibit CXCR4-induced chemotaxis or internalization and did not bring about Ca(2+) mobilization by itself. A Scatchard plot analysis of the binding assay using radiolabeled K777 revealed a single high-affinity binding site on the CCR4 molecule. These results indicate that K777 is a selective CCR4 antagonist featuring the potent chemotaxis inhibition, to which the internalization-inducible ability of K777 to hide a part of cell surface CCR4 may contribute.

Total Synthesis of K777: Successful Application of Transition-Metal-Catalyzed Alkyne Hydrothiolation toward the Modular Synthesis of a Potent Cysteine Protease Inhibitor

Org Lett 2016 Feb 5;18(3):492-5.PMID:26811991DOI:10.1021/acs.orglett.5b03535.

We report the total synthesis of K777 and a series of analogues via alkyne hydrothiolation catalyzed by Wilkinson's complex (ClRh(PPh3)3). The alkyne hydrothiolation reactions proceeded with excellent regio- and diastereoselectivity to generate the desired E-linear vinyl sulfides in high yield. The use of Ellman's auxiliary generates the requisite propargyl amines in excellent enantiomeric excess (ee) and obviates the use of L-homophenylalanine, an expensive unnatural amino acid. The vinyl sulfone derivatives exhibit a large difference in rate toward Michael addition. Kinetic data are consistent with rate-limiting nucleophilic attack to generate the carbanion intermediate.

A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells

bioRxiv 2020 Oct 30;2020.10.23.347534.PMID:33140046DOI:10.1101/2020.10.23.347534.

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 μM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 μM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.

Targets and Patented Drugs for Chemotherapy of Chagas Disease in the Last 15 Years-Period

Recent Pat Antiinfect Drug Discov 2016;11(2):74-173.PMID:27784230DOI:10.2174/1574891X11666161024165304.

Background: The American trypanosomiasis, Chagas disease, is a parasitic infection typically spread by triatomine vectors affecting millions of people all over Latin America. Existing chemotherapy is centered on the nitroaromatic compounds benznidazole and nifurtimox that provide unsatisfactory results and substantial side effects. So, the finding and exploration of novel ways to challenge this neglected disease is a main priority. Methods: The biologic and biochemical progress in the scientific knowledge of Trypanosoma cruzi in the period comprising last 15-years has increased the identification of multiple targets for Chagas´ disease chemotherapy. In the middle of the best encouraging targets for trypanocidal drugs, ergosterol biosynthesis pathway and cruzipain, a key cysteine protease (CP) of T. cruzi, have been pointed out. Unfortunately, recent clinical trials investigating the administration of pozoconazole and ravuconazole to chronic indeterminate Chagas disease patients revealed their inferiority compared to the standard drug Benznidazole. Results: In view of the information gained in the preceding years, a reasonable approach for the fast development of novel anti-T. cruzi chemotherapy would be focused on K777, the cysteine proteinase inhibitor (CPI) near to enter to clinical trials, and founded on the clinical evaluation of combination of known drugs with existing trypanocidal agents to obtain more efficiency and less secondary effects. Top series of xanthine have been recently identified as clinical candidate for Chagas disease. In addition, trypanothione biosynthesis, thiol-dependant redox and polyamine metabolism, the glycolytic, glyconeogenic, pentose phosphate, lipidic and polyisoprenoid biosynthetic pathways, and the enzymes from biosynthetic glycoconjugates pathways have been studied. Several specific enzymes from these particular biosynthetic pathways such as hypoxanthine-guaninephosphoribosyl- transferase and farnesyl-pyrophosphate synthase, among others, have also been broadly studied in T. cruzi. Novel synthesized anti-T. cruzi compounds with or without specific single or multi-target assigned are also described in detail. Conclusion: In summary, loans on anti-Chagas disease agents focused to specific parasite targets as their metabolic pathways or specific enzymes will be summarized. Targets will also be specifically discussed. Patent literature collected and published from 2000 to 2015, alleging inhibitors for specific T. cruzi targets or trypanocidal activity was achieved over the search database from Delphion Research intellectual property network including international patents and the European patent office, Espacenet.

A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells

ACS Chem Biol 2021 Apr 16;16(4):642-650.PMID:33787221DOI:10.1021/acschembio.0c00875.

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 μM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 μM. There was no toxicity to any of the host cell lines at 10-100 μM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.