Home>>Signaling Pathways>> Proteases>> Glutaminase>>KCC009

KCC009 Sale

目录号 : GC64531

KCC009 是转谷氨酰胺酶 2 的抑制剂,可诱导 p53 途径依赖的放疗敏感性。

KCC009 Chemical Structure

Cas No.:744198-19-4

规格 价格 库存 购买数量
5 mg
¥2,250.00
现货
10 mg
¥3,420.00
现货
25 mg
¥6,750.00
现货
50 mg
¥10,800.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

KCC009, a transglutaminase 2 (TG2) inhibitor, induces p53-independent radiosensitization[1][2].

The inhibition rates were 15.33±1.46 (%) for H1299/WT-p53 cells, and 14.31±1.90 (%) for H1299/M175H-p53 cells when cells were treated with KCC009 at concentration of 3.91 uM[1].

[1]. Sheng Huaying, et al. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells. Med Sci Monit. 2016 Dec 21;22:5041-5048.
[2]. L Yuan, et al. Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene

Chemical Properties

Cas No. 744198-19-4 SDF Download SDF
分子式 C21H22BrN3O5 分子量 476.32
溶解度 DMSO : 250 mg/mL (524.86 mM; Need ultrasonic) 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0994 mL 10.4971 mL 20.9943 mL
5 mM 0.4199 mL 2.0994 mL 4.1989 mL
10 mM 0.2099 mL 1.0497 mL 2.0994 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

Med Sci Monit 2016 Dec 21;22:5041-5048.PMID:28002389DOI:10.12659/msm.901605.

BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy

Oncogene 2007 Apr 19;26(18):2563-73.PMID:17099729DOI:10.1038/sj.onc.1210048.

Transglutaminase 2 (TG2, a.k.a. tissue transglutaminase) belongs to a family of transglutaminase enzymes that stabilize proteins by affecting covalent crosslinking via formation of amide bonds. Cell surface TG2 is directly involved as an adhesive receptor in cell-extracellular matrix (ECM) interactions. Here, we show that TG2 activity is elevated in glioblastomas compared with non-neoplastic brain. Immunofluorescent studies showed increased staining of fibronectin colocalized with TG2 in the ECM in glioblastomas. In addition, small clusters of invading human glioblastoma cells present in non-neoplastic brain parenchyma secrete high levels of TG2 and fibronectin that distinguish them from normal brain stroma. Downregulation of TG2 in U87MG glioblastoma cells with RNAi demonstrated decreased assembly of fibronectin in the ECM. Treatment with KCC009 blocked the remodeling of fibronectin in the ECM in glioblastomas in both in vitro and in vivo studies. KCC009 treatment in mice harboring orthotopic glioblastomas (DBT-FG) sensitized the tumors to N,N'-bis(2-chloroethyl)-N-nitrosourea chemotherapy, as measured by reduced bioluminescence, increased apoptosis and prolonged survival. The ability of KCC009 to interfere with the permissive remodeling of fibronectin in the ECM in glioblastomas suggests a novel target to enhance sensitivity to chemotherapy directed not only at the tumor mass, but also invading glioblastoma cells.

Tissue transgluaminase 2 expression in meningiomas

J Neurooncol 2008 Nov;90(2):125-32.PMID:18587533DOI:10.1007/s11060-008-9642-1.

Meningiomas are common intracranial tumors that occur in extra-axial locations, most often over the cerebral convexities or along the skull-base. Although often histologically benign these tumors frequently present challenging clinical problems. Primary clinical management of patients with symptomatic tumors is surgical resection. Radiation treatment may arrest growth or delay recurrence of these tumors, however, meningioma cells are generally resistant to apoptosis after treatment with radiation. Tumor cells are known to alter their expression of proteins that interact in the ECM to provide signals important in tumor progression. One such protein, fibronectin, is expressed in elevated levels in the ECM in a number of tumors including meningiomas. We recently reported that levels of both extracellular fibronectin and tissue transglutaminase 2 (TG2) were increased in glioblastomas. We examined the expression of fibronectin and its association TG2 in meningiomas. Both fibronectin and TG2 were strongly expressed in all meningiomas studied. TG2 activity was markedly elevated in meningiomas, and TG2 was found to co-localize with fibronectin. Treatment of meningiomas with the small molecule TG2 inhibitor, KCC009, inhibited the binding of TG2 to fibronectin and blocked disposition of linear strands of fibronectin in the ECM. KCC009 treatment promoted apoptosis and enhanced radiation sensitivity both in cultured IOMM-Lee meningioma cells and in meningioma tumor explants. These findings support a potential protective role for TG2 in meningiomas.

Pharmacologic transglutaminase inhibition attenuates drug-primed liver hypertrophy but not Mallory body formation

FEBS Lett 2006 Apr 17;580(9):2351--2357.PMID:16616523DOI:10.1016/j.febslet.2006.03.051.

Mallory bodies (MBs) are characteristic of several liver disorders, and consist primarily of keratins with transglutaminase-generated keratin crosslinks. We tested the effect of the transglutaminase-2 (TG2) inhibitor KCC009 on MB formation in a mouse model fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). KCC009 decreased DDC-induced liver enlargement without affecting MB formation or extent of liver injury. TG2 protein and activity increased after DDC feeding and localized within and outside hepatocytes. KCC009 inhibited DDC-induced hepatomegaly by affecting hepatocyte cell size rather than proliferation. Hence, TG2 is a potential mediator of injury-induced hepatomegaly via modulation of hepatocyte hypertrophy, and KCC009-mediated TG2 inhibition does not affect mouse MB formation.

Blockade of enzyme activity inhibits tissue transglutaminase-mediated transamidation of α-synuclein in a cellular model of Parkinson's disease

Neurochem Int 2011 Jun;58(7):785-93.PMID:21440023DOI:10.1016/j.neuint.2011.03.004.

Transamidation of α-synuclein by the Ca(2+)-dependent enzyme tissue transglutaminase (tTG, EC 2.3.2.13) is implicated in Parkinson's disease (PD). tTG may therefore offer a novel therapeutic target to intervene in PD. Here we first evaluated the potency and efficacy of three recently developed irreversible active-site inhibitors of tTG (B003, Z006 and KCC009) to inhibit tTG activity in vitro and in living cells. In vitro, all compounds were found to be full inhibitors of tTG activity showing a rank order of potency (defined by IC-50 values) of Z006>B003>KCC009. Upon Ca(2+) ionophore (A23187) induced activation of cellular tTG (measured by incorporation of the tTG-specific amine substrate 5-(biotinamido)pentylamine (BAP) into cellular proteins) in neuroblastoma SH-SY5Y cells, only Z006 (0.3-30 μM) retained the capacity to completely inhibit tTG activity. Under these conditions B003 (3-300 μM) only partially blocked tTG activity whereas KCC009 (3-100 μM) failed to affect tTG activity at any of the concentrations used. Z006 (30 μM) also blocked the tTG mediated incorporation of BAP into α-synuclein monomers and SDS-resistant multimers in vitro and in α-synuclein overexpressing SHSY5Y cells exposed to A23187 or the PD mimetic 1-methyl-4-phenylpyridine (MPP(+)). Moreover, Z006 (30 μM) substantially reduced formation of SDS-resistant α-synuclein multimers in SH-SY5Y cells exposed to A23187 or MPP(+) in the absence of BAP. We conclude that α-synuclein is a cellular substrate for tTG under conditions mimicking PD and blockade of tTG activity counteracts α-synuclein transamidation and aggregation in vitro and in living cells. Moreover, our cell model appears an excellent readout to identify candidate inhibitors of intracellular tTG.