Home>>Signaling Pathways>> GPCR/G protein>> Ras>>KRas G12C inhibitor 4

KRas G12C inhibitor 4 Sale

目录号 : GC34192

KRasG12Cinhibitor1是KRasG12C的抑制剂,来自专利US20180072723A1。

KRas G12C inhibitor 4 Chemical Structure

Cas No.:2206736-07-2

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

KRas G12C inhibitor 1 is a compound that inhibits KRas G12C, extracted from patent US 20180072723 A1.

[1]. Blake J, et al. Kras g12c inhibitors. US 20180072723 A1.

Chemical Properties

Cas No. 2206736-07-2 SDF
Canonical SMILES N#CC[C@@H]1N(C(C=C)=O)CCN(C2=C3C(CN(C4=C5C(Cl)=CC=CC5=CC=C4)CC3)=NC(OCCN6CCCCC6)=N2)C1
分子式 C33H38ClN7O2 分子量 600.15
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6663 mL 8.3313 mL 16.6625 mL
5 mM 0.3333 mL 1.6663 mL 3.3325 mL
10 mM 0.1666 mL 0.8331 mL 1.6663 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors

Background: No therapies for targeting KRAS mutations in cancer have been approved. The KRAS p.G12C mutation occurs in 13% of non-small-cell lung cancers (NSCLCs) and in 1 to 3% of colorectal cancers and other cancers. Sotorasib is a small molecule that selectively and irreversibly targets KRASG12C. Methods: We conducted a phase 1 trial of sotorasib in patients with advanced solid tumors harboring the KRAS p.G12C mutation. Patients received sotorasib orally once daily. The primary end point was safety. Key secondary end points were pharmacokinetics and objective response, as assessed according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. Results: A total of 129 patients (59 with NSCLC, 42 with colorectal cancer, and 28 with other tumors) were included in dose escalation and expansion cohorts. Patients had received a median of 3 (range, 0 to 11) previous lines of anticancer therapies for metastatic disease. No dose-limiting toxic effects or treatment-related deaths were observed. A total of 73 patients (56.6%) had treatment-related adverse events; 15 patients (11.6%) had grade 3 or 4 events. In the subgroup with NSCLC, 32.2% (19 patients) had a confirmed objective response (complete or partial response) and 88.1% (52 patients) had disease control (objective response or stable disease); the median progression-free survival was 6.3 months (range, 0.0+ to 14.9 [with + indicating that the value includes patient data that were censored at data cutoff]). In the subgroup with colorectal cancer, 7.1% (3 patients) had a confirmed response, and 73.8% (31 patients) had disease control; the median progression-free survival was 4.0 months (range, 0.0+ to 11.1+). Responses were also observed in patients with pancreatic, endometrial, and appendiceal cancers and melanoma. Conclusions: Sotorasib showed encouraging anticancer activity in patients with heavily pretreated advanced solid tumors harboring the KRAS p.G12C mutation. Grade 3 or 4 treatment-related toxic effects occurred in 11.6% of the patients. (Funded by Amgen and others; CodeBreaK100 ClinicalTrials.gov number, NCT03600883.).

Sotorasib for Lung Cancers with KRAS p.G12C Mutation

Background: Sotorasib showed anticancer activity in patients with KRAS p.G12C-mutated advanced solid tumors in a phase 1 study, and particularly promising anticancer activity was observed in a subgroup of patients with non-small-cell lung cancer (NSCLC).
Methods: In a single-group, phase 2 trial, we investigated the activity of sotorasib, administered orally at a dose of 960 mg once daily, in patients with KRAS p.G12C-mutated advanced NSCLC previously treated with standard therapies. The primary end point was objective response (complete or partial response) according to independent central review. Key secondary end points included duration of response, disease control (defined as complete response, partial response, or stable disease), progression-free survival, overall survival, and safety. Exploratory biomarkers were evaluated for their association with response to sotorasib therapy.
Results: Among the 126 enrolled patients, the majority (81.0%) had previously received both platinum-based chemotherapy and inhibitors of programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1). According to central review, 124 patients had measurable disease at baseline and were evaluated for response. An objective response was observed in 46 patients (37.1%; 95% confidence interval [CI], 28.6 to 46.2), including in 4 (3.2%) who had a complete response and in 42 (33.9%) who had a partial response. The median duration of response was 11.1 months (95% CI, 6.9 to could not be evaluated). Disease control occurred in 100 patients (80.6%; 95% CI, 72.6 to 87.2). The median progression-free survival was 6.8 months (95% CI, 5.1 to 8.2), and the median overall survival was 12.5 months (95% CI, 10.0 to could not be evaluated). Treatment-related adverse events occurred in 88 of 126 patients (69.8%), including grade 3 events in 25 patients (19.8%) and a grade 4 event in 1 (0.8%). Responses were observed in subgroups defined according to PD-L1 expression, tumor mutational burden, and co-occurring mutations in STK11, KEAP1, or TP53.
Conclusions: In this phase 2 trial, sotorasib therapy led to a durable clinical benefit without new safety signals in patients with previously treated KRAS p.G12C-mutated NSCLC. (Funded by Amgen and the National Institutes of Health; CodeBreaK100 ClinicalTrials.gov number, NCT03600883.).

Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation

Background: Adagrasib, a KRASG12C inhibitor, irreversibly and selectively binds KRASG12C, locking it in its inactive state. Adagrasib showed clinical activity and had an acceptable adverse-event profile in the phase 1-1b part of the KRYSTAL-1 phase 1-2 study.
Methods: In a registrational phase 2 cohort, we evaluated adagrasib (600 mg orally twice daily) in patients with KRASG12C -mutated non-small-cell lung cancer (NSCLC) previously treated with platinum-based chemotherapy and anti-programmed death 1 or programmed death ligand 1 therapy. The primary end point was objective response assessed by blinded independent central review. Secondary end points included the duration of response, progression-free survival, overall survival, and safety.
Results: As of October 15, 2021, a total of 116 patients with KRASG12C -mutated NSCLC had been treated (median follow-up, 12.9 months); 98.3% had previously received both chemotherapy and immunotherapy. Of 112 patients with measurable disease at baseline, 48 (42.9%) had a confirmed objective response. The median duration of response was 8.5 months (95% confidence interval [CI], 6.2 to 13.8), and the median progression-free survival was 6.5 months (95% CI, 4.7 to 8.4). As of January 15, 2022 (median follow-up, 15.6 months), the median overall survival was 12.6 months (95% CI, 9.2 to 19.2). Among 33 patients with previously treated, stable central nervous system metastases, the intracranial confirmed objective response rate was 33.3% (95% CI, 18.0 to 51.8). Treatment-related adverse events occurred in 97.4% of the patients - grade 1 or 2 in 52.6% and grade 3 or higher in 44.8% (including two grade 5 events) - and resulted in drug discontinuation in 6.9% of patients.
Conclusions: In patients with previously treated KRASG12C -mutated NSCLC, adagrasib showed clinical efficacy without new safety signals. (Funded by Mirati Therapeutics; ClinicalTrials.gov number, NCT03785249.).

Identification of MRTX1133, a Noncovalent, Potent, and Selective KRASG12D Inhibitor

KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of solid tumors. However, when compared to KRASG12C, selective inhibition of KRASG12D presents a significant challenge due to the requirement of inhibitors to bind KRASG12D with high enough affinity to obviate the need for covalent interactions with the mutant KRAS protein. Here, we report the discovery and characterization of the first noncovalent, potent, and selective KRASG12D inhibitor, MRTX1133, which was discovered through an extensive structure-based activity improvement and shown to be efficacious in a KRASG12D mutant xenograft mouse tumor model.

Targeting Krasg12c -mutant cancer with a mutation-specific inhibitor

The RAS genes, which include H, N, and KRAS, comprise the most frequently mutated family of oncogenes in cancer. Mutations in KRAS - such as the G12C mutation - are found in most pancreatic, half of colorectal and a third of lung cancer cases and is thus responsible for a substantial proportion of cancer deaths. Consequently, KRAS has been the subject of exhaustive drug-targeting efforts over the past 3-4 decades. These efforts have included targeting the KRAS protein itself but also its posttranslational modifications, membrane localization, protein-protein interactions and downstream signalling pathways. Most of these strategies have failed and no KRAS-specific drugs have yet been approved. However, for one specific mutation, KRASG12C , there is light on the horizon. MRTX849 was recently identified as a potent, selective and covalent KRASG12C inhibitor that possesses favourable drug-like properties. MRTX849 selectively modifies the mutant cysteine residue in GDP-bound KRASG12C and inhibits GTP-loading and downstream KRAS-dependent signalling. The drug inhibits the in vivo growth of multiple KRASG12C -mutant cell line xenografts, causes tumour regression in patient-derived xenograft models and shows striking responses in combination with other agents. It has also produced objective responses in patients with mutant-specific lung and colorectal cancer. In this review, we discuss the history of RAS drug-targeting efforts, the discovery of MRTX849, and how this drug provides an exciting and long-awaited opportunity to selectively target mutant KRAS in patients.