KRM-III
目录号 : GC63034KRM-III 是一种有效的具有口服活性的 T 细胞抗原受体 (TCR) 抑制剂。KRM-III 抑制 TCR 和肉豆蔻酸乙酸酯/佛波霉素/离子霉素诱导的 NFAT 核因子活化和 T 细胞增殖,IC50 约为 5 μM。抗炎活性。
Cas No.:79220-94-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
KRM-III is a potent and orally active T-cell antigen receptor (TCR) inhibitor. KRM-III inhibits TCR- and phorbol myristate acetate/ionomycin-induced activation of nuclear factor of activated T cells (NFAT) and T-cell proliferation with an IC50 of ~5 μM. Anti-inflammatory activity[1].
[1]. Eun Joo Jung, et al. Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model. J Pharmacol Exp Ther. 2009 Dec;331(3):1005-13.
Cas No. | 79220-94-3 | SDF | |
分子式 | C15H12N2S | 分子量 | 252.33 |
溶解度 | DMSO : 100 mg/mL (396.31 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.9631 mL | 19.8153 mL | 39.6306 mL |
5 mM | 0.7926 mL | 3.9631 mL | 7.9261 mL |
10 mM | 0.3963 mL | 1.9815 mL | 3.9631 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model
J Pharmacol Exp Ther 2009 Dec;331(3):1005-13.PMID:19741152DOI:10.1124/jpet.109.154948.
T cells play a pivotal role in the initiation and progression of multiple sclerosis. We have found that 1,4-aryl-2-mercaptoimidazole (KRM-III) inhibited T-cell antigen receptor- and phorbol myristate acetate/ionomycin-induced activation of nuclear factor of activated T cells (NFAT) and T-cell proliferation with an IC(50) of 5 microM. The KRM-III-mediated inhibitory effect was specific for NFAT activation but not for nuclear factor kappaB. Oral administration of 90 mg/kg KRM-III resulted in complete abrogation of anti-CD3 antibody-induced T-cell activation and a 45.8% reduction in footpad swelling in bovine serum albumin-induced delayed-type hypersensitivity. In the murine experimental autoimmune encephalomyelitis (EAE) model, oral administration of KRM-III significantly attenuated the severity of disease when given before or after disease onset. Draining lymph node cells from KRM-III-treated mice showed markedly reduced proliferation in response to myelin oligodendrocyte glycoprotein peptide. Histological analysis indicated that KRM-III reduced the infiltration of inflammatory cells to the white matter of spinal lumbar cords. These results demonstrate that KRM-III efficiently inhibits T-cell activation and inflammatory responses and lessens EAE clinical signs, which suggest KRM-III as a potential lead compound for the treatment of T-cell-driven autoimmune diseases.
Population dynamics of cyanomyovirus in a tropical eutrophic reservoir
Microbes Environ 2015;30(1):12-20.PMID:25736864DOI:10.1264/jsme2.ME14039.
Samples from three stations in Kranji Reservoir, Singapore (n = 21) were collected and analyzed for cyanomyovirus abundance and diversity. A total of 73 different g20 (viral capsid assembly protein genes) amino acid sequences were obtained from this study. A phylogenetic analysis revealed that the 73 segments were distributed in six major clusters (α to ζ), with four unique subclusters, which were identified as KRM-I, KRM-II, KRM-III, and KRM-IV. The cyanophage community in Kranji Reservoir exhibited a large degree of diversity; the clones obtained in this study showed similarities to those from many different environments, including oceans, lakes, bays, and paddy floodwater, as well as clones from paddy field soils. However, the sequences in this study were generally found to be more closely related to the g20 sequences of freshwaters and brackish waters than those from marine environments. The rarefaction curves and Chao 1 indices from this study showed that the diversity of the cyanomyovirus community was greater during the Inter-monsoon periods than the Southwest and Northeast Monsoons. A few seasonal changes in the taxa were observed: (i) Cluster ζ was absent during the Southwest Monsoon, and (ii) most of the samples fell into Group 3 in the PCA score plot during the Northeast Monsoon, and the fraction of Cluster ɛ increased significantly.