Home>>Signaling Pathways>> Immunology/Inflammation>> NO Synthase>>Kuwanon A

Kuwanon A Sale

(Synonyms: 桑皮酮A) 目录号 : GC31391

KuwanonA是从桑树(MorusalbaL.)的根皮中分离的的黄酮衍生物,抑制一氧化氮产生的IC50值为10.5μM。

Kuwanon A Chemical Structure

Cas No.:62949-77-3

规格 价格 库存 购买数量
2 mg
¥1,305.00
现货
5 mg
¥2,619.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:

RAW264.7 cells are treated with Kuwanon A (3, 10, 20, 30, 100 μM). Cell viability is measured using the MTT assay[1].

References:

[1]. Yang ZG, et al. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules. 2011 Jul 19;16(7):6010-22.

产品描述

Kuwanon A is a flavone derivative isolated from the root barks of the mulberry tree (Morus alba L.); inhibits nitric oxide production with an IC50 of 10.5 μM.

Kuwanon A shows significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes with TG inhibition values of 47.1%. Kuwanon A also shows significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells with an IC50 of 10.5 μM[1].

[1]. Yang ZG, et al. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules. 2011 Jul 19;16(7):6010-22.

Chemical Properties

Cas No. 62949-77-3 SDF
别名 桑皮酮A
Canonical SMILES O=C1C(C/C=C(C)\C)=C(C2=C3C(C=CC(C)(C)O3)=C(O)C=C2)OC4=CC(O)=CC(O)=C14
分子式 C25H24O6 分子量 420.45
溶解度 Soluble in DMSO 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3784 mL 11.892 mL 23.784 mL
5 mM 0.4757 mL 2.3784 mL 4.7568 mL
10 mM 0.2378 mL 1.1892 mL 2.3784 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Kuwanon T and Sanggenon a Isolated from Morus alba Exert Anti-Inflammatory Effects by Regulating NF-κB and HO-1/Nrf2 Signaling Pathways in BV2 and RAW264.7 Cells

We previously investigated the methanolic extract of Morus alba bark and characterized 11 compounds from the extract: kuwanon G (1), kuwanon E (2), kuwanon T (3), sanggenon A (4), sanggenon M (5), sanggenol A (6), mulberofuran B (7), mulberofuran G (8), moracin M (9), moracin O (10), and norartocarpanone (11). Herein, we investigated the anti-inflammatory effects of these compounds on microglial cells (BV2) and macrophages (RAW264.7). Among them, 3 and 4 markedly inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide in these cells, suggesting the anti-inflammatory properties of these two compounds. These compounds inhibited the production of prostaglandin E2, interleukin-6, and tumor necrosis factor-α, and the expression of inducible nitric oxide synthase and cyclooxygenase-2 following LPS stimulation. Pretreatment with 3 and 4 inhibited the activation of the nuclear factor kappa B signaling pathway in both cell types. The compounds also induced the expression of heme oxygenase (HO)-1 through the activation of nuclear factor erythroid 2-related factor 2. Suppressing the activity of HO-1 reversed the anti-inflammatory effects caused by pretreatment with 3 and 4, suggesting that the anti-inflammatory effects were regulated by HO-1. Taken together, 3 and 4 are potential candidates for developing therapeutic and preventive agents for inflammatory diseases.

Kuwanon-L as a New Allosteric HIV-1 Integrase Inhibitor: Molecular Modeling and Biological Evaluation

HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.

Enantioselective Total Syntheses of Kuwanon X, Kuwanon Y, and Kuwanol A

The first enantioselective total syntheses of (-)-kuwanon X, (+)-kuwanon Y, and (+)-kuwanol A have been accomplished by using asymmetric Diels-Alder cycloaddition promoted by chiral VANOL or VAPOL/boron Lewis acid. The biosynthesis-inspired asymmetric Diels-Alder cycloaddition shows high exo selectivity (exo/endo = 13/1), which was unprecedented in the previous total syntheses of related prenylflavonoid Diels-Alder natural products. An acid catalyzed intramolecular ketalization process enabled a biomimetic transformation to construct the polycyclic skeleton of kuwanol A efficiently.

Evaluation of Selective COX-2 Inhibition and In Silico Study of Kuwanon Derivatives Isolated from Morus alba

Six kuwanon derivatives (A/B/C/E/H/J) extracted from the roots of Morus alba L. were evaluated to determine their cyclooxygenase (COX)-1 and 2 inhibitory effects. Cyclooxygenase (COX) is known as the target enzyme of nonsteroidal anti-inflammatory drugs (NSAIDs), which are the most widely used therapeutic agents for pain and inflammation. Among six kuwanon derivatives, kuwanon A showed selective COX-2 inhibitory activity, almost equivalent to that of celecoxib, a known COX inhibitor. Kuwanon A showed high COX-2 inhibitory activity (IC50 = 14 μM) and a selectivity index (SI) range of >7.1, comparable to celecoxib (SI > 6.3). To understand the mechanisms underlying this effect, we performed docking simulations, fragment molecular orbital (FMO) calculations, and pair interaction energy decomposition analysis (PIEDA) at the quantum-mechanical level. As a result, kuwanon A had the strongest interaction with Arg120 and Tyr355 at the gate of the COX active site (-7.044 kcal/mol) and with Val89 in the membrane-binding domain (-6.599 kcal/mol). In addition, kuwanon A closely bound to Val89, His90, and Ser119, which are residues at the entrance and exit routes of the COX active site (4.329 ?). FMO calculations and PIEDA well supported the COX-2 selective inhibitory action of kuwanon A. It showed that the simulation and modeling results and experimental evidence were consistent.

Kuwanon G protects HT22 cells from advanced glycation end product-induced damage

The incidence of diabetic encephalopathy is increasing as the population ages. Evidence suggests that formation and accumulation of advanced glycation end products (AGEs) plays a pivotal role in disease progression, but limited research has been carried out in this area. A previous study demonstrated that Kuwanon G (KWG) had significant anti-oxidative stress and anti-inflammatory properties. As AGEs are oxidative products and inflammation is involved in their generation it is hypothesized that KWG may have effects against AGE-induced neuronal damage. In the present study, mouse hippocampal neuronal cell line HT22 was used. KWG was shown to significantly inhibit AGE-induced cell apoptosis in comparison with a control treatment, as determined by both MTT and flow cytometry. Compared with the AGEs group, expression of pro-apoptotic protein Bax was reduced and expression of anti-apoptotic protein Bcl-2 was increased in the AGEs + KWG group. Both intracellular and extracellular levels of acetylcholine and choline acetyltransferase were significantly elevated after KWG administration in comparison with controls whilethe level of acetylcholinesterase decreased. These changes in protein expression were accompanied by increased levels of superoxide dismutase and glutathione peroxidase synthesis and reduced production of malondialdehyde and reactive oxygen species. Intracellular signaling pathway protein levels were determined by western blot and immunocytochemistry. KWG administration was found to prevent AGE-induced changes to the phosphorylation levels of Akt, IκB-α, glycogen synthase kinase 3 (GSK3)-α and β, p38 MAPK and NF-κB p65 suggesting a potential neuroprotective effect of KWG against AGE-induced damage was via the PI3K/Akt/GSK3αβ signaling pathway. The findings of the present study suggest that KWG may be a potential treatment for diabetic encephalopathy.