Home>>Signaling Pathways>> Immunology/Inflammation>> TLR>>L48H37

L48H37 Sale

目录号 : GC64417

L48H37 是一种化学稳定性提高了的姜黄素 类似物。L48H37 是一种有效且特异性的髓系分化蛋白 2 (MD2) 抑制剂,抑制 LPS-TLR4/MD2 的相互作用和信号转导。L48H37 用于脓毒症或肺损伤的相关研究。

L48H37 Chemical Structure

Cas No.:343307-76-6

规格 价格 库存 购买数量
5 mg
¥720.00
现货
10 mg
¥1,080.00
现货
25 mg
¥2,160.00
现货
50 mg
¥3,420.00
现货
100 mg
¥5,580.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

L48H37 is an analog of Curcumin with improved chemical stability. L48H37 is a potent and specific myeloid differentiation protein 2 (MD2) inhibitor and inhibits the interaction and signaling transduction of LPS-TLR4/MD2. L48H37 is used for the research of sepsis or lung injury treatment[1].

L48H37 inhibits LPS-induced inflammation, particularly TNF-α and IL-6 production and gene expression in mouse macrophages[1].
L48H37 (0-20 µM; 24 hours) decreases the viability of A549 and H460 cells with IC50 values of 5.3 µM and 2.3 µM, respectively, which is more effective compared to curcumin in lung cancer cells. It shows a low cytotoxicity on normal human lung epithelial cells (BEAS-2B) with IC50 of 21 μM[2].
L48H37 (1, 2, or 4 µM; 16 hours) dose‐dependently inhibited the expression of p‐Cdc2 and Cdc2, and increases the expression of p53. It also shows increased levels of cleaved poly (ADP‐ribosyl) polymerase (PARP) and reduced levels of anti‐apoptotic protein Bcl‐2 in H460 and A549 cells[2].
L48H37 (4 µM; 16 hours) rapidly induces intracellular ROS levels dose-dependently as detected by increased DCF levels in H460 and A549 cells[2].

L48H37 (intraperitoneal injection; 5 mg or 10 mg/kg; once daily; 11‐day ) inhibits H460 xenograft tumor growth and exhibits anti‐tumor activity in mice[1].

[1]. Yi Wang, et al. Curcumin Analog L48H37 Prevents Lipopolysaccharide-Induced TLR4 Signaling Pathway Activation and Sepsis via Targeting MD2. J Pharmacol Exp Ther. 2015 Jun;353(3):539-50 [2]. Chen Feng, et al. Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells. Mol Carcinog. 2017 Jul;56(7):1765-1777.

Chemical Properties

Cas No. 343307-76-6 SDF Download SDF
分子式 C27H33NO7 分子量 483.55
溶解度 DMSO : 50 mg/mL (103.40 mM; Need ultrasonic) 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.068 mL 10.3402 mL 20.6804 mL
5 mM 0.4136 mL 2.068 mL 4.1361 mL
10 mM 0.2068 mL 1.034 mL 2.068 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Curcumin Analogue L48H37 Suppresses Human Osteosarcoma U2OS and MG-63 Cells' Migration and Invasion in Culture by Inhibition of uPA via the JAK/STAT Signaling Pathway

Molecules 2020 Dec 23;26(1):30.PMID:33374783DOI:10.3390/molecules26010030.

Osteosarcoma, the most prevalent malignant bone tumor in the pediatric age group, is responsible for the great majority of cancer-associated deaths owing to its highly metastatic potential. The anti-metastatic effects of the new curcumin analogue L48H37 in human osteosarcoma are still unknown; hence, we investigated whether L48H37 represses human osteosarcoma cells' biological behavior of migratory potential and invasive activities and attempted to delve into its underlying mechanisms. L48H37 up to 5 μM inhibited, without cytotoxicity, the motility, migration, and invasion of human osteosarcoma U2OS and MG-63 cells. In U2OS cells, the human protease array revealed an obvious decrease in urokinase plasminogen activator (uPA) expression after L48H37 treatment, and L48H37 actually reduced the level, protein and mRNA expression, and promoter activity of uPA dose-dependently. L48H37 decreased the phosphorylation of STAT3, JAK1, JAK2, and JAK3 in U2OS cells, but did not affect the phosphorylation of ERK, JNK, p38, and Akt. Using colivelin, an activator of STAT3, the L48H37-induced decrease in uPA and migratory potential could be countered as expected. Collectively, L48H37 represses the invasion and migration capabilities of U2OS and MG-63 cells by the suppression of uPA expression and the inhibition of JAK/STAT signaling. These results suggest that L48H37 may be a potential candidate for anti-metastatic treatment of human osteosarcoma.

Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells

Mol Carcinog 2017 Jul;56(7):1765-1777.PMID:28218464DOI:10.1002/mc.22633.

Lung cancer is the leading cause of cancer-related deaths. Curcumin is a well-known natural product with anticancer ability, however, its poor bioavailability and pharmacokinetic profiles have limited its application in anticancer therapy. Previously, we reported that L48H37, a novel analog of curcumin with higher bioavailability, ameliorated LPS-induced inflammation, but the anticancer effect of L48H37 is still unknown. In the present study, we have investigated the effects of L48H37 in human lung cancer cells. Our results show that L48H37 decreases lung cancer cell growth and colony formation. These alterations were mediated through induction of G2/M cell cycle arrest and apoptosis in lung cancer cells. After L48H37 treatment, ER stress-related proteins were increased, and the expression of p-STAT3 was decreased in a dose-dependent manner. L48H37 also induced the accumulation of ROS in lung cancer cells, and pretreatment with NAC could fully reverse L48H37-induced reactive oxygen species (ROS) increase. Blocking ROS was able to reverse L48H37-induced endoplasmic reticulum (ER) stress, cell cycle arrest, and apoptosis. Finally, we show that L48H37 inhibits the growth of lung cancer xenografts without exhibiting toxicity. Treatment of mice bearing human lung cancer xenografts with L48H37 was also associated with indices of ER stress activation. In summary, our results provide evidence for a novel anti-tumor candidate for the treatment of lung cancer.

KMT2D deficiency enhances the anti-cancer activity of L48H37 in pancreatic ductal adenocarcinoma

World J Gastrointest Oncol 2019 Aug 15;11(8):599-621.PMID:31435462DOI:10.4251/wjgo.v11.i8.599.

Background: Novel therapeutic strategies are urgently needed for patients with a delayed diagnosis of pancreatic ductal adenocarcinoma (PDAC) in order to improve their chances of survival. Recent studies have shown potent anti-neoplastic effects of curcumin and its analogues. In addition, the role of histone methyltransferases on cancer therapeutics has also been elucidated. However, the relationship between these two factors in the treatment of pancreatic cancer remains unknown. Our working hypothesis was that L48H37, a novel curcumin analog, has better efficacy in pancreatic cancer cell growth inhibition in the absence of histone-lysine N-methyltransferase 2D (KMT2D). Aim: To determine the anti-cancer effects of L48H37 in PDAC, and the role of KMT2D on its therapeutic efficacy. Methods: The viability and proliferation of primary (PANC-1 and MIA PaCa-2) and metastatic (SW1990 and ASPC-1) PDAC cell lines treated with L48H37 was determined by CCK8 and colony formation assay. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) levels, and cell cycle profile were determined by staining the cells with Annexin-V/7-AAD, JC-1, DCFH-DA, and PI respectively, as well as flow cytometric acquisition. In vitro migration was assessed by the wound healing assay. The protein and mRNA levels of relevant factors were analyzed using Western blotting, immunofluorescence and real time-quantitative PCR. The in situ expression of KMT2D in both human PDAC and paired adjacent normal tissues was determined by immunohistochemistry. In vivo tumor xenografts were established by injecting nude mice with PDAC cells. Bioinformatics analyses were also conducted using gene expression databases and TCGA. Results: L48H37 inhibited the proliferation and induced apoptosis in SW1990 and ASPC-1 cells in a dose- and time-dependent manner, while also reducing MMP, increasing ROS levels, arresting cell cycle at the G2/M stages and activating the endoplasmic reticulum (ER) stress-associated protein kinase RNA-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 (ATF4)/CHOP signaling pathway. Knocking down ATF4 significantly upregulated KMT2D in PDAC cells, and also decreased L48H37-induced apoptosis. Furthermore, silencing KMT2D in L48H37-treated cells significantly augmented apoptosis and the ER stress pathway, indicating that KMT2D depletion is essential for the anti-neoplastic effects of L48H37. Administering L48H37 to mice bearing tumors derived from control or KMT2D-knockdown PDAC cells significantly decreased the tumor burden. We also identified several differentially expressed genes in PDAC cell lines expressing very low levels of KMT2D that were functionally categorized into the extrinsic apoptotic signaling pathway. The KMT2D high- and low-expressing PDAC patients from the TCGA database showed similar survival rates,but higher KMT2D expression was associated with poor tumor grade in clinical and pathological analyses. Conclusion: L48H37 exerts a potent anti-cancer effect in PDAC, which is augmented by KMT2D deficiency.

Curcumin Analog L48H37 Prevents Lipopolysaccharide-Induced TLR4 Signaling Pathway Activation and Sepsis via Targeting MD2

J Pharmacol Exp Ther 2015 Jun;353(3):539-50.PMID:25862641DOI:10.1124/jpet.115.222570.

Endotoxin-induced acute inflammatory diseases such as sepsis, mediated by excessive production of various proinflammatory cytokines, remain the leading cause of mortality in critically ill patients. Lipopolysaccharide (LPS), the characteristic endotoxin found in the outer membrane of Gram-negative bacteria, can induce the innate immunity system and through the myeloid differentiation protein 2 (MD2) and Toll-like receptor 4 (TLR4) complex, increase the production of inflammatory mediators. Our previous studies have found that a curcumin analog, L48H37 [1-ethyl-3,5-bis(3,4,5-trimethoxybenzylidene)piperidin-4-one], was able to inhibit LPS-induced inflammation, particularly tumor necrosis factor α and interleukin 6 production and gene expression in mouse macrophages. In this study, a series of biochemical experiments demonstrate L48H37 specifically targets MD2 and inhibits the interaction and signaling transduction of LPS-TLR4/MD2. L48H37 binds to the hydrophobic region of MD2 pocket and forms hydrogen bond interactions with Arg(90) and Tyr(102). Subsequently, L48H37 was shown to suppress LPS-induced mitogen-activated protein kinase phosphorylation and nuclear factor κB activation in macrophages; it also dose dependently inhibits the cytokine expression in macrophages and human peripheral blood mononuclear cells stimulated by LPS. In LPS-induced septic mice, both pretreatment and treatment with L48H37 significantly improved survival and protected lung injury. Taken together, this work identified a new MD2 specific inhibitor, L48H37, as a potential candidate in the treatment of sepsis.

The Effect of C-Phycocyanin on Microglia Activation Is Mediated by Toll-like Receptor 4

Int J Mol Sci 2022 Jan 27;23(3):1440.PMID:35163363DOI:10.3390/ijms23031440.

The blue-green alga Spirulina platensis is rich in phycocyanins, that exhibit a wide range of pharmacological actions. C-phycocyanin (C-PC), in particular, possesses hepatoprotective, nephroprotective, antioxidant, and anticancer effects. Furthermore, several studies have reported both anti- and proinflammatory properties of this pigment. However, the precise mechanism(s) of action of C-PC in these processes remain largely unknown. Therefore, here we explored the C-PC effect in in vitro microglia activation. The effect of C-PC on the expression and release of IL-1β and TNF-α and the activation of NF-κB was examined in primary microglia by real-time PCR, ELISA, and immunofluorescence. Treatment with C-PC up-regulated the expression and release of IL-1β and TNF-α. C-PC also promoted the nuclear translocation of the NF-κB transcription factor. Then, to elucidate the molecular mechanisms for the immunoregulatory function of C-PC, we focused on investigating the role of Toll-like receptor 4 (TLR4). Accordingly, several TLR4 inhibitors have been used. Curcumin, ciprofloxacin, L48H37, and CLI-095 that suppresses specifically TLR4 signaling, blocked IL-1β and TNF-α. Overall, these results indicate the immunomodulatory effect of C-PC in microglia cultures and show for the first time that the molecular mechanism implicated in this effect may involve TLR4 activation.