Home>>Signaling Pathways>> Microbiology & Virology>> HBV>>Lagociclovir (MIV-210)

Lagociclovir (MIV-210) Sale

(Synonyms: 2',3'-二脱氧-3'-氟鸟苷,MIV-210) 目录号 : GC32287

Lagociclovir (MIV-210)(MIV-210) 是 3'-fluoro-2',3'-dideoxyguanosine 的前药,在人体中具有高口服生物利用度和有效的抗 HBV 活性。

Lagociclovir (MIV-210) Chemical Structure

Cas No.:92562-88-4

规格 价格 库存 购买数量
5mg
¥2,186.00
现货
10mg
¥3,776.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Lagociclovir(MIV-210) is a prodrug of 3'-fluoro-2',3'-dideoxyguanosine with high oral bioavailability in humans and potent activity against HBV. IC50 value:Target: Anti-HBV compoundOral administration of MIV-210 at 20 or 60 mg/kg of body weight/day induced a rapid virological response in chronically infected woodchucks, reducing serum WHV DNA levels by 4.75 log10 and 5.72 log10, respectively, in 2 weeks. Further, a daily dose of 10 mg/kg decreased the serum WHV load 400-fold after 4 weeks of treatment, and a dose of 5 mg/kg/day was sufficient to maintain this antiviral effect during the following 6-week period. MIV-210 at 20 or 60 mg/kg/day reduced the liver WHV DNA load 200- to 2,500-fold from pretreatment levels and, importantly, led to a 2.0 log10 drop in the hepatic content of WHV covalently closed circular DNA.

[1]. Michalak TI, et al. Profound antiviral effect of oral administration of MIV-210 on chronic hepadnaviral infection in a woodchuck model of hepatitis B. Antimicrob Agents Chemother. 2009 Sep;53(9):3803-14.

Chemical Properties

Cas No. 92562-88-4 SDF
别名 2',3'-二脱氧-3'-氟鸟苷,MIV-210
Canonical SMILES O=C(N=C(N)N1)C2=C1N([C@@H]3O[C@H](CO)[C@@H](F)C3)C=N2
分子式 C10H12FN5O3 分子量 269.23
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.7143 mL 18.5715 mL 37.143 mL
5 mM 0.7429 mL 3.7143 mL 7.4286 mL
10 mM 0.3714 mL 1.8571 mL 3.7143 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Profound antiviral effect of oral administration of MIV-210 on chronic hepadnaviral infection in a woodchuck model of hepatitis B

Antimicrob Agents Chemother 2009 Sep;53(9):3803-14.PMID:19564357DOI:10.1128/AAC.00263-09.

MIV-210 is a prodrug of 3'-fluoro-2',3'-dideoxyguanosine with high oral bioavailability in humans and potent activity against hepatitis B virus (HBV). Woodchucks infected with woodchuck hepatitis virus (WHV) represent an accurate model of HBV infection that is utilized for evaluation of the efficacy and safety of novel anti-HBV agents. Oral administration of MIV-210 at 20 or 60 mg/kg of body weight/day induced a rapid virological response in chronically infected woodchucks, reducing serum WHV DNA levels by 4.75 log10 and 5.72 log10, respectively, in 2 weeks. A progressive decline in WHV viremia occurred throughout the 10-week therapy, giving final reductions of 7.23 log10 and 7.68 log10 in the 20- and 60-mg/kg/day groups, respectively. Further, a daily dose of 10 mg/kg decreased the serum WHV load 400-fold after 4 weeks of treatment, and a dose of 5 mg/kg/day was sufficient to maintain this antiviral effect during the following 6-week period. MIV-210 at 20 or 60 mg/kg/day reduced the liver WHV DNA load 200- to 2,500-fold from pretreatment levels and, importantly, led to a 2.0 log10 drop in the hepatic content of WHV covalently closed circular DNA. The treatment with 60 mg/kg/day was well tolerated. Liver biopsy specimens obtained after the 10-week treatment with 20 or 60 mg/kg/day and after the 10-week follow-up showed hepatocyte and mitochondrial ultrastructures comparable to those in the placebo-treated group. It was concluded that MIV-210 is highly effective against chronic WHV infection. These findings, together with the previously demonstrated inhibitory activity of MIV-210 against lamivudine-, adefovir-, and entecavir-resistant HBV variants, make MIV-210 a highly valuable candidate for further testing as an agent against chronic hepatitis B.

Emerging anti-HIV drugs

Expert Opin Emerg Drugs 2005 May;10(2):241-73.PMID:15934866DOI:10.1517/14728214.10.2.241.

There are now exactly 20 anti-HIV drugs licenced (approved) for clinical use, and > 30 anti-HIV compounds under (pre)clinical development. The licensed anti-HIV drugs fall into five categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir disoproxil fumarate); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine and efavirenz); protease inhibitors (PIs: saquinavir, indinavir, ritonavir, nelfinavir, amprenavir, lopinavir, atazanavir and fosamprenavir); and fusion inhibitors (FIs: enfuvirtide). The compounds that are currently under clinical (Phase I, II or III) or preclinical investigation are either targeted at the same specific viral proteins as the licensed compounds (i.e., reverse transcriptase [NRTIs: PSI-5004, (-)-dOTC, DPC-817, elvucitabine, alovudine, MIV-210, amdoxovir, DOT; NNRTIs: thiocarboxanilide, UC-781, capravirine, dapivirine, etravirine, rilpivirine], protease [PIs: tipranavir, TMC-114]) or other specific viral proteins (i.e., gp120: cyanovirin N; attachment inhibitors: AIs, such as BMS-488043; integrase: L-870,812, PDPV-165; capsid proteins: PA-457, alpha-HCG); or cellular proteins (CD4 downmodulators: CADAs; CXCR4 antagonists: AMD-070, CS-3955; CCR5 antagonists: TAK-220, SCH-D, AK-602, UK-427857). Combination therapy is likely to remain the gold standard for the treatment of AIDS so as to maximise potency, minimise toxicity and diminish the risk for resistance development. Ideally, pill burden should be reduced to once-daily dosing so as to optimise the patient's compliance and reduce the treatment costs.