LAH4
目录号 : GC34256LAH4是一种抗菌肽,能够与磷脂膜相互作用,体外转染效率高。
Cas No.:184776-51-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
LAH4 is an antimicrobial peptide that strongly interacts with phospholipid membranes, exhibiting in vitro transfection efficiency.
LAH4 exhibits potent antimicrobial, nucleic acid transfection and cell penetration activities[1]. LAH4 mediates the transport of functional β-galactosidase, a large tetrameric protein of about 0.5 MDa, into the cell interior[2]. At acidic pH, LAH4 has exhibited a high tendency to interact strongly with and be adsorbed on anionic membrane[3].
[1]. Perrone B, et al. Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities. Eur Biophys J. 2014 Nov;43(10-11):499-507. [2]. Moulay G, et al. Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. J Pept Sci. 2017 Apr;23(4):320-328. [3]. Islami M, et al. Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence. Chem Biol Drug Des. 2014 Aug;84(2):242-52.
Cas No. | 184776-51-0 | SDF | |
Canonical SMILES | Lys-Lys-Ala-Leu-Leu-Ala-Leu-Ala-Leu-His-His-Leu-Ala-His-Leu-Ala-Leu-His-Leu-Ala-Leu-Ala-Leu-Lys-Lys-Ala | ||
分子式 | C132H228N38O27 | 分子量 | 2779.53 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 0.3598 mL | 1.7989 mL | 3.5977 mL |
5 mM | 0.072 mL | 0.3598 mL | 0.7195 mL |
10 mM | 0.036 mL | 0.1799 mL | 0.3598 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation
Biomaterials 2019 Mar;195:23-37.PMID:30610991DOI:10.1016/j.biomaterials.2018.12.019.
Messenger RNA-based vaccines have the potential to trigger robust cytotoxic immune responses, which are essential for fighting cancer and infectious diseases like HIV. Dendritic Cells (DCs) are choice targets for mRNA-based vaccine strategies, as they link innate and adaptive immune responses and are major regulators of cytotoxic and humoral adaptive responses. However, efficient delivery of antigen-coding mRNAs into DC cytosol has been highly challenging. In this study, we developed an alternative to lipid-based mRNA delivery systems, using poly(lactic acid) nanoparticles (PLA-NPs) and cationic cell-penetrating peptides as mRNA condensing agent. The formulations are assembled in two steps: (1) formation of a polyplex between mRNAs and amphipathic cationic peptides (RALA, LAH4 or LAH4-L1), and (2) adsorption of polyplexes onto PLA-NPs. LAH4-L1/mRNA polyplexes and PLA-NP/LAH4-L1/mRNA nanocomplexes are taken up by DCs via phagocytosis and clathrin-dependent endocytosis, and induce strong protein expression in DCs in vitro. They modulate DC innate immune response by activating both endosome and cytosolic Pattern Recognition Receptors (PRRs), and induce markers of adaptive responses in primary human DCs in vitro, with prevalent Th1 signature. Thus, LAH4-L1/mRNA and PLA-NP/LAH4-L1/mRNA represent a promising platform for ex vivo treatment and mRNA vaccine development.
LAH4 enhances CD8+ T cell immunity of protein/peptide-based vaccines
Vaccine 2012 Jan 17;30(4):784-93.PMID:22120194DOI:10.1016/j.vaccine.2011.11.056.
It is now clear that CD8+ T cells are crucial for therapeutic immunity against chronic viral infections and/or tumors. We reason that a strategy capable of improving CD8+ T cell activation would improve the efficacy of protein-based vaccines, which predominantly generate CD4+ T cell-mediated responses. Herein, we explore the ability of a novel cell-penetrating peptide (CPP), LAH4, to facilitate intracellular delivery of protein-based vaccines adjuvanted with Toll-like receptor 9 agonist CpG oligonucleotide (CpG) to generate enhanced CD8+ T cell immune responses and antitumor effects. LAH4 was found to mediate the intracellular delivery of both protein and nucleotide cargo and facilitate protein internalization using mechanisms involving endosomal acidification and processing through the proteasome pathway, leading to enhanced cross presentation of protein antigen by dendritic cells to CD8+ T cells. LAH4 also improved the internalization of CpG, resulting in NFkB activation, thus potentiating the adjuvant effect of CpG. We found that protein-based vaccine comprised of LAH4 mixed with model antigen and CpG generated significantly improved antigen-specific CD8+ T cell immune responses and/or antitumor effects. Furthermore, we found that LAH4 was able to enhance the ability of a tyrosinase-related protein 2 (TRP-2) peptide-based vaccine to generate TRP2-specific CD8+ T cells and antitumor effects against TRP2-expressing tumors. Thus, our results suggest that CPP technology using LAH4 is able to enhance both protein-based and peptide-based vaccine potency to generate antigen-specific CD8+ T cells and antitumor effects. Our findings serve as an important foundation for future clinical applications of CPP technology to improve protein/peptide-based vaccine potency.
Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence
Chem Biol Drug Des 2014 Aug;84(2):242-52.PMID:24581146DOI:10.1111/cbdd.12311.
LAH4 is an antimicrobial peptide that is believed to possess both antibiotic and DNA delivery capabilities. It is one of a number of membrane-active peptides that show increased affinity toward anionic lipids. Herein, we have performed molecular dynamics simulations to compare LAH4 effects on anionic palmitoyl-oleoyl-phosphatidylglycerol bilayer, which approximate a prokaryotic membrane environment and zwitterionic palmitoyl-oleoyl-phosphatidylcholine bilayer, which approximate a eukaryotic membrane environment. One particular interest in this work is to study how different kinds of lipid bilayers respond to the attraction of LAH4. Remarkably, our data have shown that the depth of peptide penetration strongly depends on membrane composition and pH. At acidic pH, LAH4 has exhibited a high tendency to interact strongly with and be adsorbed on anionic membrane. We have also shown that electrostatic interactions between His11 and the phosphor atoms of bilayers should have a significant impact on the penetration of LAH4. These results provide insights into the interactions of LAH4 and lipid bilayers at the atomic level, which is useful to understand cell selectivity and mechanism of the peptide action.
Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities
Eur Biophys J 2014 Nov;43(10-11):499-507.PMID:25182242DOI:10.1007/s00249-014-0980-y.
The cationic amphipathic designer peptide LAH4 exhibits potent antimicrobial, nucleic acid transfection and cell penetration activities. Closely related derivatives have been developed to enhance viral transduction for gene therapeutic assays. LAH4 contains four histidines and, consequently, its overall charge and membrane topology in lipid bilayers are strongly pH dependent. In order to better understand the differential interactions of this amphipathic peptide with negatively-charged membranes its interactions, topologies, and penetration depth were investigated in the presence of lipid bilayers as a function of pH, buffer, phospholipid head group, and fatty acyl chain composition using a combination of oriented synchrotron radiation circular dichroism spectroscopy as well as oriented and non-oriented solid-state NMR spectroscopy. This combination of methods indicates that in the presence of lipids with phosphatidylglycerol head groups, the topological equilibria of LAH4 is shifted towards more in-plane configurations even at neutral pH. In contrast, a transmembrane alignment is promoted when LAH4 interacts with membranes made of dimyristoyl phospholipids rather than palmitoyl-oleoyl-phospholipids. Finally, the addition of citrate buffer favours LAH4 transmembrane alignments, even at low pH, probably by complex formation with the cationic charges of the peptide. In summary, this study has revealed that the membrane topology of this peptide is readily modulated by the environmental conditions.
Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo
J Pept Sci 2017 Apr;23(4):320-328.PMID:28067008DOI:10.1002/psc.2955.
The histidine-rich designer peptides of the LAH4 family exhibit potent antimicrobial, transfection, transduction and cell-penetrating properties. They form non-covalent complexes with their cargo, which often carry a negative overall charge at pH 7.4 and include a large range of molecules and structures such as oligonucleotides, including siRNA and DNA, peptides, proteins, nanodots and adeno-associated viruses. These complexes are thought to enter the cells through an endosomal pathway where the acidification of the organelle is essential for efficient endosomal escape. Biophysical measurements indicate that, upon acidification, almost half the peptides are released from DNA cargo, leading to the suggestion of a self-promoted uptake mechanism where the liberated peptides lyse the endosomal membranes. LAH4 derivatives also help in cellular transduction using lentiviruses. Here, we compare the DNA transfection activities of LAH4 derivatives, which vary in overall charge and/or the composition in the hydrophobic core region. In addition, LAH4 is shown to mediate the transport of functional β-galactosidase, a large tetrameric protein of about 0.5 MDa, into the cell interior. Interestingly, the LAH1 peptide efficiently imports this protein, while it is inefficient during DNA transfection assays. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.