LCS3
目录号 : GC49753An inhibitor of glutathione reductase and thioredoxin reductase
Cas No.:109844-92-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
LCS3 is an inhibitor of glutathione reductase (GR) and thioredoxin reductase (TrxR; IC50s = 3.3 and 3.8 µM, respectively).1 It decreases the glutathione (GSH) to oxidized GSH (GSSG) ratio in NCI H1650 and H23 lung adenocarcinoma cells in a concentration-dependent manner. LCS3 (3 µM) induces apoptosis in NCI H1650 and H23 cells but not non-transformed HPL1D lung epithelial cells. It is also active against M. tuberculosis (MIC = 0.098 µM).2
1.Johnson, F.D., Ferrarone, J., Liu, A., et al.Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cellsCell Rep.38(6)110343(2022) 2.Gallardo-Marcias, R., Kumar, P., Jaskowski, M., et al.Optimization of N-benzyl-5-nitrofuran-2-carboxamide as an antitubercular agentBioorg. Med. Chem. Lett.29(4)601-606(2019)
Cas No. | 109844-92-0 | SDF | Download SDF |
Canonical SMILES | O=C(NC1=CC=C(Cl)C=C1)C=2OC(=CC2)N(=O)=O | ||
分子式 | C11H7ClN2O4 | 分子量 | 266.6 |
溶解度 | DMF: slightly,DMSO: 1 mg/ml,Ethanol: insol,PBS (pH 7.2): insol | 储存条件 | -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.7509 mL | 18.7547 mL | 37.5094 mL |
5 mM | 0.7502 mL | 3.7509 mL | 7.5019 mL |
10 mM | 0.3751 mL | 1.8755 mL | 3.7509 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Callose Synthesis Suppresses Cell Death Induced by Low-Calcium Conditions in Leaves
Plant Physiol 2020 Apr;182(4):2199-2212.PMID:32024698DOI:10.1104/pp.19.00784.
Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis (Arabidopsis thaliana) under low-Ca conditions. A mutant sensitive to low-Ca conditions, low calcium sensitive3 (LCS3), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions. Further analyses showed that the causal mutation was located in a putative β-1,3-glucan (callose) synthase gene, GLUCAN SYNTHASE-LIKE10 (GSL10). Yeast complementation assay results showed that GSL10 encodes a functional callose synthase. Ectopic callose significantly accumulated in wild-type plants under low-Ca conditions, but at a low level in LCS3 The low-Ca sensitivity of LCS3 was phenocopied by the application of callose synthase inhibitors in wild-type plants, which resulted in leaf expansion failure, cell death, and reduced ectopic callose levels under low-Ca conditions. Transcriptome analyses showed that the expression of genes related to cell wall and defense responses was altered in both wild-type plants under low-Ca conditions and in LCS3 under normal-Ca conditions, suggesting that GSL10 is required for the alleviation of both cell wall damage and defense responses caused by low Ca levels. These results suggest that callose synthesis is essential for the prevention of cell death under low-Ca conditions and plays a key role in plants' survival strategies under low-Ca conditions.
Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells
Cell Rep 2022 Feb 8;38(6):110343.PMID:35139387DOI:10.1016/j.celrep.2022.110343.
Phenotype-based screening can identify small molecules that elicit a desired cellular response, but additional approaches are required to characterize their targets and mechanisms of action. Here, we show that a compound termed LCS3, which selectively impairs the growth of human lung adenocarcinoma (LUAD) cells, induces oxidative stress. To identify the target that mediates this effect, we use thermal proteome profiling (TPP) and uncover the disulfide reductases GSR and TXNRD1 as targets. We confirm through enzymatic assays that LCS3 inhibits disulfide reductase activity through a reversible, uncompetitive mechanism. Further, we demonstrate that LCS3-sensitive LUAD cells are sensitive to the synergistic inhibition of glutathione and thioredoxin pathways. Lastly, a genome-wide CRISPR knockout screen identifies NQO1 loss as a mechanism of LCS3 resistance. This work highlights the ability of TPP to uncover targets of small molecules identified by high-throughput screens and demonstrates the potential therapeutic utility of inhibiting disulfide reductases in LUAD.
Design of primer pairs for species-specific diagnosis of Leishmania (Leishmania) infantum chagasi using PCR
Rev Bras Parasitol Vet 2012 Jul-Sep;21(3):304-7.PMID:23070446DOI:10.1590/s1984-29612012000300024.
The objective of this study was to design and evaluate new primers for species-specific detection of L. infantum chagasi using PCR. Two combinations of primer pairs were established with the aim of obtaining specific amplification products from the L. infantum chagasi 18S rRNA gene. The combinations of the primer pairs and the respective sizes of the PCR products, based on the U422465 GenBank reference sequence of L. infantum chagasi, were: LCS1/LCS3 (259 bp) and LCS2/LCS3 (820 bp). It was concluded that the new PCR assays optimized using the primer pairs LCS1/LCS3 and LCS2/LCS3 were effective for specific detection of L. infantum chagasi, with analytical sensitivity to detect 1 pg/µL of DNA.
Acute inflammatory response in the mouse: exacerbation by immunoneutralization of lipocortin 1
Br J Pharmacol 1996 Mar;117(6):1145-54.PMID:8882609DOI:10.1111/j.1476-5381.1996.tb16709.x.
1. An immuno-neutralization strategy was employed to investigate the role of endogenous lipocortin 1 (LC1) in acute inflammation in the mouse. 2. Mice were treated subcutaneously with phosphate-buffered solution (PBS), non-immune sheep serum (NSS) or with one of two sheep antisera raised against LC1 (LCS3), or its N-terminal peptide (LCPS1), three times over a period of seven days. Twenty four hours after the last injection several parameters of acute inflammation were measured including zymosan-induced inflammation in 6-day-old air-pouches, zymosan-activated serum (ZAS)-induced oedema in the skin, platelet-activating factor (PAF)-induced neutrophilia and interleukin-1 beta (IL-1 beta)-induced corticosterone (CCS) release. 3. At the 4 h time-point of the zymosan inflamed air-pouch model, treatment with LCS3 did not modify the number of polymorphonuclear leucocytes (PMN) recruited: 7.84 +/- 1.01 and 7.00 +/- 0.77 x 10(6) PMN per mouse for NSS- and LCS3 group, n = 7. However, several other parameters of cell activation including myeloperoxidase (MPO) and elastase activities were increased (2.2 fold, P < 0.05, and 6.5 fold, P < 0.05, respectively) in the lavage fluids of these mice. Similarly, a significant increase in the amount of immunoreactive prostaglandin E2 (PGE2; 1.81 fold, P < 0.05) and IL-1 alpha (2.75 fold, P < 0.05), but not tumour necrosis factor-alpha (TNF-alpha), was also observed in LCS3-treated mice. 4. The recruitment of PMN into the zymosan inflamed air-pouches by 24 h had declined substantially (4.13 +/- 0.61 x 10(6) PMN per mouse, n = 12) in the NSS-treated mice, whereas high values were still measured in those treated with LCS3 (9.35 +/- 1.20 x 10(6) PMN per mouse, n = 12, P < 0.05). A similar effect was also found following sub-chronic treatment of mice with LCPS1: 6.48 +/- 0.10 x 10(6) PMN per mouse, vs. 2.77 +/- 1.20 and 2.64 +/- 0.49 x 10(6) PMN per mouse for PBS- and NSS-treated groups (n = 7, P < 0.05). Most markers of inflammation were also increased in the lavage fluids of LCS3-treated mice: MPO and elastase showed a 2.47 fold and 17 fold increase, respectively (P < 0.05 in both cases); TNF-alpha showed a 11.1 fold increase (P < 0.05) whereas the IL-1 alpha levels were not significantly modified. PGE2 was still detectable in most (5 out of 7) of the mice treated with LCS3 but only in 2 out of 7 of the NSS-treated mice. 5. Intradermal injection of 50% ZAS caused a significant increase in the 2 hoedema formation in the skin of LCS3-treated mice in comparison to PBS- and NSS-treated animals: 16.7 +/- 1.5 microliters vs. 10.8 +/- 1.2 microliters and 10.2 +/- 1.0 microliters, respectively (n = 14 mice per group, P < 0.05). ZAS-induced oedema had subsided by 24 h in control animals but a residual significant amount of extravasation was still detectable in LCS3-treated mice: 4.4 +/- 0.8 microliters (P < 0.05). 6. A recently described model driven by endogenous glucocorticoids is the blood neutrophilia observed following administration of PAF. In our experimental conditions, a single bolus of PAF (100 ng, i.v.) provoked a marked neutrophilia at 2 h (2.43 and 2.01 fold) in NSS- and PBS-treated mice (n = 11), respectively, which was significantly attenuated in the animals treated with LCS3: 1.26 fold increase in circulating PMN (n = 11, P < 0.01 vs. NSS- and PBS-groups). 7. Intraperitoneal injection of IL-1 beta (5 micrograms kg-1) caused a marked increase in circulating plasma CCS by 2 h, to a similar extent in all experimental groups. In contrast, measurement of CCS levels in the plasma of mice bearing air-pouches inflamed with zymosan revealed significant differences between LCS3 and NSS-treated mice at the 4 h time-point: 198 +/- 26 ng ml-1 vs. 110 +/- 31 ng ml-1 (n = 8, P < 0.05). 8. In conclusion, we found a remarkable exacerbation of the inflammatory process with respect to both humoral and cellular components in mice passively immunised agains
Annexin 1 localisation in tissue eosinophils as detected by electron microscopy
Mediators Inflamm 2002 Oct;11(5):287-92.PMID:12467520DOI:10.1080/09629350210000015683.
Background: Human and rodent leukocytes express high levels of the glucocorticoid-inducible protein annexin 1 (ANXA1) (previously referred to as lipocortin 1). Neutrophils and monocytes have abundant ANXA1 levels. Aim: We have investigated, for the first time, ANXA1 ultrastructural expression in rat eosinophils and compared it with that of extravasated neutrophils. The effect of inflammation (carrageenin peritonitis) was also monitored. Methods: Electron microscopy was used to define the sub-cellular localisation of ANXA1 in rat eosinophils and neutrophils extravasated in the mesenteric tissue. A pair of antibodies raised against the ANXA1 N-terminus (i.e. able to recognise intact ANXA1, termed LCPS1) or the whole protein (termed LCS3) was used to perform the ultrastructural analysis. Results: The majority of ANXA1 was localised in the eosinophil cytosol (approximately 60%) and nucleus (30-40%), whereas a small percentage was found on the plasma membrane (< 10%). Within the cytosol, the protein was equally distributed in the matrix and in the granules, including those containing the typical crystalloid. The two anti-ANXA1 antibodies gave similar results, with the exception that LCPS1 gave a lower degree of immunoreactivity in the plasma membrane. Inflammation (i.e. carrageenin injection) produced a modest increase in eosinophil-associated ANXA1 reactivity (significant only in the cytoplasm compartment). Extravasated neutrophils, used for comparative purposes, displayed a much higher degree of immunoreactivity for the protein. Conclusion: We describe for the first time ANXA1 distribution in rat eosinophil by ultrastructural analysis, and report a different protein mobilisation from extravasated neutrophils, at least in this acute model of peritonitis.