Leucanicidin
(Synonyms: 杀黏虫菌素) 目录号 : GC40071A macrolide bacterial metabolite
Cas No.:91021-66-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Leucanicidin is a macrolide bacterial metabolite originally isolated from S. halstedii. It is toxic to L. separata fourth instar larvae when used at a concentration of 20 ppm and to H. contortus, T. colubriformis, and O. circumcincta larvae (LD50s = 0.23-0.42 µg/ml).
Cas No. | 91021-66-8 | SDF | |
别名 | 杀黏虫菌素 | ||
分子式 | C42H70O13 | 分子量 | 783 |
溶解度 | DMF: Soluble,DMSO: Soluble,Ethanol: Soluble,Methanol: Soluble | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.2771 mL | 6.3857 mL | 12.7714 mL |
5 mM | 0.2554 mL | 1.2771 mL | 2.5543 mL |
10 mM | 0.1277 mL | 0.6386 mL | 1.2771 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Leucanicidin and Endophenasides Result from Methyl-Rhamnosylation by the Same Tailoring Enzymes in Kitasatospora sp. MBT66
ACS Chem Biol 2016 Feb 19;11(2):478-90.PMID:26675041DOI:10.1021/acschembio.5b00801.
The increasing bacterial multidrug resistance necessitates novel drug-discovery efforts. One way to obtain novel chemistry is glycosylation, which is prevalent in nature, with high diversity in both the sugar moieties and the targeted aglycones. Kitasatospora sp. MBT66 produces endophenaside antibiotics, which is a family of (methyl-)rhamnosylated phenazines. Here we show that this strain also produces the plecomacrolide Leucanicidin (1), which is derived from bafilomycin A1 by glycosylation with the same methyl-rhamnosyl moiety as present in the endophenasides. Immediately adjacent to the baf genes for bafilomycin biosynthesis lie leuA and leuB, which encode a sugar-O-methyltransferase and a glycosyltransferase, respectively. LeuA and LeuB are the only enzymes encoded by the genome of Kitasatospora sp. MBT66 that are candidates for the methyl-rhamnosylation of natural products, and mutation of leuB abolished glycosylation of both families of natural products. Thus, LeuA and -B mediate the post-PKS methyl-rhamnosylation of bafilomycin A1 to Leucanicidin and of phenazines to endophenasides, showing surprising promiscuity by tolerating both macrolide and phenazine skeletons as the substrates. Detailed metabolic analysis by MS/MS based molecular networking facilitated the characterization of nine novel phenazine glycosides 6-8, 16, and 22-26, whereby compounds 23 and 24 represent an unprecedented tautomeric glyceride phenazine, further enriching the structural diversity of endophenasides.
Bafilolides, potent inhibitors of the motility and development of the free-living stages of parasitic nematodes
Int J Parasitol 1995 Mar;25(3):349-57.PMID:7601593DOI:10.1016/0020-7519(94)00082-y.
Three Streptomyces isolates were identified as producing macrolide antibiotics of the bafilomycin or Leucanicidin types during an evaluation of Australian actinomyces for the production of inhibitors of larval development in the parasitic nematode, Haemonchus contortus. Bafilomycins A1, B1, C1, and D were obtained from culture A239 and the 2-O-methyl-L-rhamnosyl derivative of bafilomycin A1, Leucanicidin, from cultures A223 and A240. All these 'bafilolides' gave similar patterns of inhibition typified by an initial paralysis of newly hatched L1 larvae and a lethal toxicity within 24 h. LD50 values for inhibition of larval development of McMaster H. contortus ranged from 0.23 micrograms ml-1 for Leucanicidin to 2.5 micrograms ml-1 for bafilomycin D. The bafilolides had broad spectrum nematocidal activity, being equi-potent as inhibitors of H. contortus, Trichostrongylus colubriformis and Ostertagia circumcincta larval development. Further, all bafilolides caused some inhibition of H. contortus L3 motility, with the semi-synthetic analogue, bafilomycin B2, the most potent inhibitor (LP50 against McMaster H. contortus 1.9 microgram ml-1). Nematode strains resistant to the known benzimidazole, levamisole and avermectin anthelmintics showed no cross resistance to the bafilolides, supporting the hypothesis that the bafilolides act by an independent mechanism.