Home>>Signaling Pathways>> Neuroscience>> Dopamine Receptor>>Lurasidone (SM-13496)

Lurasidone (SM-13496) Sale

(Synonyms: 鲁拉西酮; SM-13496) 目录号 : GC30926

An atypical antipsychotic

Lurasidone (SM-13496) Chemical Structure

Cas No.:367514-87-2

规格 价格 库存 购买数量
10mg
¥360.00
现货
50mg
¥990.00
现货
100mg
¥1,620.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Animal experiment:

SD rats are individually isolated in clear plastic cages and injected with methamphetamine (MAP) (1 mg/kg i.p.) 1 h after the administration of drugs or vehicle. In the test of persistence of the effect, Lurasidone (SM-13496) is administered 1, 2, 4, and 8 h before the MAP injection. Locomotor activity is measured for 80 min from 10 min after MAP injection. Four or five groups of 6 to 13 rats are used to calculate the ED50 value that inhibits MAP-induced hyperactivity by 50% of the animals tested[1].

References:

[1]. Ishibashi T, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010 Jul;334(1):171-81.
[2]. Sakine Atila Karaca, et al. Development of a validated high-performance liquid chromatographic method for the determination of Lurasidone in pharmaceuticals. Marmara Pharm J. 2017;21 (4): 931-937.

产品描述

Lurasidone is an atypical antipsychotic that binds to dopamine D2, serotonin (5-HT) receptor subtypes 5-HT2A, 5-HT1A, and 5-HT7, and α2C-adrenergic receptors (Kis = 1.68, 2.03, 6.75, 0.495, and 10.8 nM, respectively).1 In vivo, pre-training administration of lurasidone (1 and 3 mg/kg) reverses impairment in step-through latency and passive avoidance in a foot shock test induced by MK-801 in rats. It reverses MK-801-induced learning impairment in the Morris water maze as well as reference and working memory impairment in the radial arm maze in rats.2 Lurasidone also decreases immobility in the tail suspension and forced swim tests, indicating antidepressant-like activity in mice.3 Formulations containing lurasidone have been used in the treatment of schizophrenia and mood disorders.

1.Ishiyama, T., Tokuda, K., Ishibashi, T., et al.Lurasidone (SM-13496), a novel atypical antipsychotic drug, reverses MK-801-induced impairment of learning and memory in the rat passive-avoidance testEur. J. Pharmacol.572(2-3)160-170(2007) 2.Enomoto, T., Ishibashi, T., Tokuda, K., et al.Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in ratsBehav. Brain Res.186(2)197-207(2008) 3.Cates, L.N., Roberts, A.J., Huitron-Resendiz, S., et al.Effects of lurasidone in behavioral models of depression. Role of the 5-HT7 receptor subtypeNeuropharmacology70211-217(2013)

Chemical Properties

Cas No. 367514-87-2 SDF
别名 鲁拉西酮; SM-13496
Canonical SMILES O=C([C@H]1[C@H]2C[C@H](CC2)[C@@H]31)N(C[C@H](CCCC4)[C@@H]4CN5CCN(CC5)C6=NSC7=CC=CC=C67)C3=O
分子式 C28H36N4O2S 分子量 492.68
溶解度 DMSO : 20.83 mg/mL (42.28 mM);Water : < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0297 mL 10.1486 mL 20.2972 mL
5 mM 0.4059 mL 2.0297 mL 4.0594 mL
10 mM 0.203 mL 1.0149 mL 2.0297 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Dose-Response Meta-Analysis of Antipsychotic Drugs for Acute Schizophrenia

Objective: The dose-response relationships of antipsychotic drugs for schizophrenia are not well defined, but such information would be important for decision making by clinicians. The authors sought to fill this gap by conducting dose-response meta-analyses. Methods: A search of multiple electronic databases (through November 2018) was conducted for all placebo-controlled dose-finding studies for 20 second-generation antipsychotic drugs and haloperidol (oral and long-acting injectable, LAI) in people with acute schizophrenia symptoms. Dose-response curves were constructed with random-effects dose-response meta-analyses and a spline model. The outcome measure was total score reduction from baseline on the Positive and Negative Syndrome Scale or the Brief Psychiatric Rating Scale. The authors identified 95% effective doses, explored whether higher or lower doses than the currently licensed ones might be more appropriate, and derived dose equivalencies from the 95% effective doses. Results: Sixty-eight studies met the inclusion criteria. The 95% effective doses and the doses equivalent to 1 mg of oral risperidone, respectively, were as follows: amisulpride for patients with positive symptoms, 537 mg/day and 85.8 mg; aripiprazole, 11.5 mg/day and 1.8 mg; aripiprazole LAI (lauroxil), 463 mg every 4 weeks and 264 mg; asenapine, 15.0 mg/day and 2.4 mg; brexpiprazole, 3.36 mg/day and 0.54 mg; haloperidol, 6.3 mg/day and 1.01 mg; iloperidone, 20.13 mg/day and 3.2 mg; lurasidone, 147 mg/day and 23.5 mg; olanzapine, 15.2 mg/day and 2.4 mg; olanzapine LAI, 277 mg every 2 weeks and 3.2 mg; paliperidone, 13.4 mg/day and 2.1 mg; paliperidone LAI, 120 mg every 4 weeks and 1.53 mg; quetiapine, 482 mg/day and 77 mg; risperidone, 6.3 mg/day and 1 mg; risperidone LAI, 36.6 mg every 2 weeks and 0.42 mg; sertindole, 22.5 mg/day and 3.6 mg; and ziprasidone, 186 mg/day and 30 mg. For amisulpride and olanzapine, specific data for patients with predominant negative symptoms were available. The authors have made available on their web site a spreadsheet with this method and other updated methods that can be used to estimate dose equivalencies in practice. Conclusions: In chronic schizophrenia patients with acute exacerbations, doses higher than the identified 95% effective doses may on average not provide more efficacy. For some drugs, higher than currently licensed doses might be tested in further trials, because their dose-response curves did not plateau.

Lurasidone Improves Psychopathology and Cognition in Treatment-Resistant Schizophrenia

Purpose/background: In addition to clozapine, other atypical antipsychotic drugs pharmacologically similar to clozapine, for example, olanzapine, risperidone, and melperone, are also effective in a similar proportion of treatment-resistant schizophrenia (TRS) patients, ~40%. The major goal of this study was to compare 2 doses of lurasidone, another atypical antipsychotic drug, and time to improvement in psychopathology and cognition during a 6-month trial in TRS patients.
Methods/procedures: The diagnosis of TRS was based on clinical history and lack of improvement in psychopathology during a 6-week open trial of lurasidone 80 mg/d (phase 1). This was followed by a randomized, double-blind, 24-week trial of lurasidone, comparing 80- and 240-mg/d doses (phase 2).
Findings/results: Significant non-dose-related improvement in the Positive and Negative Syndrome Scale-Total and subscales and in 2 of 7 cognitive domains, speed of processing and executive function, were noted. Twenty-eight (41.8%) of 67 patients in the combined sample improved ≥20% in the Positive and Negative Syndrome Scale-Total. Of the 28 responders, 19 (67.9%) first reached ≥20% improvement between weeks 6 and 24 during phase 2, including some who had previously failed to respond to clozapine.
Implications/conclusions: Improvement with lurasidone is comparable with those previously reported for clozapine, melperone, olanzapine, and risperidone in TRS patients. In addition, this study demonstrated that 80 mg/d lurasidone, an effective and tolerable dose for non-TRS patients, was also effective in TRS patients but required longer duration of treatment. Direct comparison of lurasidone with clozapine in TRS patients is indicated.

New Atypical Antipsychotics in the Treatment of Schizophrenia and Depression

Schizophrenia and depression are heterogeneous disorders. The complex pathomechanism of the diseases imply that medication responses vary across patients. Many psychotropic drugs are available but achieving optimal therapeutic effect can be challenging. The evidence correlates well with clinical observations, suggesting that new atypical antipsychotic drugs are effective against negative and cognitive symptoms of schizophrenia, as well as against affective symptoms observed in depression. The purpose of this review presents the background and evidence for the use of the new second/third-generation antipsychotics (aripiprazole, cariprazine, lurasidone, asenapine, brexpiprazole, lumateperone, pimavanserin) in treatment of schizophrenia and depression. We have first provided a brief overview of the major neurobiological underpinnings of schizophrenia and depression. We then shortly discuss efficacy, safety and limitations of ongoing pharmacotherapy used in depression and schizophrenia. Mainly, we have focused this review on the therapeutic potential of new atypical antipsychotic drugs-currently existing-to be effective in psychotic, as well as in affective disorders.

Comparative efficacy and tolerability of pharmacological treatments for the treatment of acute bipolar depression: A systematic review and network meta-analysis

Objective: We investigated the comparative efficacy and tolerability of pharmacological treatment strategies for the treatment of acute bipolar depression.
Data sources: A systematic review and network meta-analysis was conducted by searching eight registries for published and unpublished, double-blind, randomized controlled trials of pharmacotherapies for the acute treatment of bipolar depression.
Data extraction and synthesis: PRISMA guidelines were used for abstracting data, while the Cochrane Risk of Bias Tool was used to assess data quality. Data extraction was done independently by two reviewers, with discrepancies resolved by consensus. Data were pooled using a random-effects model.
Main outcomes and measures: Primary outcomes were efficacy (response and remission rate) and acceptability (completion of treatment and dropouts due to adverse events). Summary odds ratios (ORs) were estimated using pairwise and network meta-analysis with random effects.
Results: Identified citations (4,404) included 50 trials comprising 11,448 participants. Escitalopram, phenelzine, moclobemide, carbamazepine, sertraline, lithium, paroxetine, aripiprazole, gabapentin and ziprasidone appear to be ineffective as compared to placebo in treatment of bipolar depression. Divalproex, olanzapine/fluoxetine, olanzapine, quetiapine, cariprazine, and lamotrigine, appear to be effective as compared to placebo in treatment of bipolar depression according to the network meta-analysis. Aripiprazole showed higher discontinuation rates versus placebo due to the appearance of any adverse event. Quetiapine was better than placebo at reducing treatment-emergent affective switches. For Bipolar I Disorder, cariprazine, fluoxetine, imipramine, lamotrigine, lurasidone, olanzapine-fluoxetine, and olanzapine were significantly better than placebo at response, while fluoxetine, imipramine, cariprazine, lurasidone, olanzapine-fluoxetine, and olanzapine were significantly better than placebo at remission.
Conclusions and relevance: These results could serve evidence-based practice and inform patients, physicians, guideline developers, and policymakers on the relative benefits of the different antidepressants, antipsychotics, and mood-stabilizing agents for the treatment of bipolar depression.
Registration: PROSPERO (CRD42019122172).

Lurasidone (SM-13496), a novel atypical antipsychotic drug, reverses MK-801-induced impairment of learning and memory in the rat passive-avoidance test

Lurasidone (SM-13496) is a novel atypical antipsychotic with high affinities to dopamine D2, serotonin 5-HT7, 5-HT2A, 5-HT1A receptors and alpha2C adrenoceptor. In this study, the effects of lurasidone on the rat passive-avoidance response and its impairment by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine) were evaluated and compared with those of other antipsychotics. The passive-avoidance response was examined by measuring the step-through latency, 1 day after the animals received foot-shock training. When given before the training session, lurasidone did not affect the passive-avoidance response at any dose tested (1-30 mg/kg, p.o.). All the other atypical antipsychotics examined (i.e., risperidone, olanzapine, quetiapine, clozapine and aripiprazole), however, significantly reduced the step-through latency at relatively high doses. A pre-training administration of lurasidone significantly and dose-dependently reversed the MK-801-induced impairment of the passive-avoidance response. At doses lower than those that affected the passive-avoidance response, risperidone, quetiapine, and clozapine partially reduced the MK-801-induced impairment, whereas haloperidol, olanzapine, and aripiprazole were inactive. In addition, the post-training administration of lurasidone was as effective in countering the MK-801 effect as the pre-training administration, suggesting that lurasidone worked, at least in part, by restoring the memory consolidation process disrupted by MK-801. These results suggest that lurasidone is superior to other antipsychotics in improving the MK-801-induced memory impairment and may be clinically useful for treating cognitive impairments in schizophrenia.