LY487379
(Synonyms: 2,2,2-三氟-N-[4-(2-甲氧基苯氧基)苯基]-N-(3-吡啶基甲基)-乙磺酰胺) 目录号 : GC64319LY487379 是一种选择性人 mGluR2 正变构调节剂 (PAM)。LY487379 增强谷氨酸刺激[35S]GTPγS 与 EC50 值分别为 1.7 μM 和 >10 μM 的 mGlu2 和 mGlu3 受体的结合。LY487379 可促进大鼠认知灵活性,促进行为抑制。LY487379 可用于精神分裂症研究。
Cas No.:353231-17-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
LY487379 is a selective human mGluR2 positive allosteric modulator (PAM). LY487379 potentiates glutamate-stimulated [35S]GTPγS binding with EC50 values of 1.7 μM and >10 μM for mGlu2 and mGlu3 receptors respectively. LY487379 promotes cognitive flexibility and facilitates behavioral inhibition in a rat model. LY487379 can be used for schizophrenia research[2].
LY487379 (intraperitoneal injection; 30 mg/kg; injected 30 min before the test) requires significantly fewer trials to criterion during the ED phase of the ASST in attentional set-shifting task in male Sprague-Dawley rats. But there has no significant drug effect during any other discrimination stage[1].LY487379 hydrochloride (intraperitoneal injection; 10-30 mg/kg) induces an increase in microdialysate norepinephrine levels; the dose-effect resembled a bell-shape relationship increased. And it dose-dependently increases extracellular serotonin levels in the medial prefrontal cortex in male Sprague-Dawley rats[1].
[1]. Nikiforuk A, et al. Effects of a positive allosteric modulator of group II metabotropic glutamate receptors, LY487379, on cognitive flexibility and impulsive-like responding in rats. J Pharmacol Exp Ther. 2010;335(3):665-673.
[2]. Schaffhauser H, et al. Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol. 2003;64(4):798-810.
Cas No. | 353231-17-1 | SDF | Download SDF |
别名 | 2,2,2-三氟-N-[4-(2-甲氧基苯氧基)苯基]-N-(3-吡啶基甲基)-乙磺酰胺 | ||
分子式 | C21H19F3N2O4S | 分子量 | 452.45 |
溶解度 | DMSO : 100 mg/mL (221.02 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.2102 mL | 11.0509 mL | 22.1019 mL |
5 mM | 0.442 mL | 2.2102 mL | 4.4204 mL |
10 mM | 0.221 mL | 1.1051 mL | 2.2102 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
The positive allosteric modulator at mGlu2 receptors, LY487379, reverses the effects of chronic stress-induced behavioral maladaptation and synaptic dysfunction in the adulthood
Synapse 2019 Sep;73(9):e22101.PMID:30964565DOI:10.1002/syn.22101.
Chronic stress induces maladaptive neural responses in several brain areas including hippocampus. It has been demonstrated that chronic stress exposure induced a downregulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors, which would reduce the negative feedback role exerted by these receptors. The reduced availability of these receptors would enhance glutamate overflow in the hippocampus, supporting the hypothesis that hippocampal glutamatergic neurotransmission plays a key etiopathological determinant in stress-induced neuropsychiatric disorders. Since modulation of glutamatergic neurotransmission has been shown to represent an interesting pharmacological tool to treat psychiatric disorders, in the present study we have investigated the effects of the mGlu2 receptor positive allosteric modulator (PAM) LY487379. The rational bases of our study were: (a) chronic restraint stress (CRS) application in C57/BALB6 mouse induced a loss of resilience at the behavioral, biochemical, and electrophysiological level; (b) a superimposed familiar stressor (restraint) but not unfamiliar (i.e., forced swim stress) completely reversed the effects of CRS. Using the CRS model, in the present study we have investigated the effects of LY487379, an mGlu2 PAM, as well as a superimposed familiar stressor (acute restraint stress-ARS), on the immobility time at the tail suspension test and electrophysiological profile of glutamatergic transmission in the dentate gyrus (DG).
Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice
Int J Mol Sci 2019 Jun 6;20(11):2781.PMID:31174329DOI:10.3390/ijms20112781.
Negative and cognitive symptoms of schizophrenia contribute to an impaired social and professional life for schizophrenic patients, and in most cases, these symptoms are treatment resistant. Therefore, identification of new treatment strategies is sorely needed. Metabotropic glutamate receptors (mGlu) and muscarinic (M) receptors for acetylcholine have been considered promising targets for novel antipsychotics. Among them, mGlu2 and M4 subtypes seem to be of particular importance. In the present study, the effect of mutual activation of mGlu2 and M4 receptors was assessed in MK-801-based animal models of negative and cognitive symptoms of schizophrenia, that is, social interaction and novel object recognition tests. Low sub-effective doses of LY487379 (0.5 mg/kg), a positive allosteric activator of the mGlu2 receptor, and VU152100 (0.25-0.5 mg/kg), a positive allosteric modulator of the M4 receptor, were simultaneously administered in the aforementioned tests. Combined administration of these compounds prevented MK-801-induced disturbances in social interactions and object recognition when acutely administered 30 min before MK-801. Prolonged (7 days) administration of these compounds resulted in the loss of effectiveness in preventing MK-801-induced disruptions in the novel object recognition test but not in the social interaction test. In the next set of experiments, MK-801 (0.3 mg/kg) was administered for seven consecutive days, and the activity of the compounds was investigated on day eight, during which time MK-801 was not administered. In this model, based on prolonged MK-801 administration, the effectiveness of the compounds to treat MK-801-induced disruptions was evident at low doses which were ineffective in preventing the behavioural disturbances induced by an acute MK-801 injection. Combined administration of the compounds did not exert better efficacy than each compound given alone. Pharmacokinetic analysis confirmed a lack of possible drug-drug interactions after combined administration of LY487379 and VU152100. Our data show that modulation of M4 and mGlu2 receptors may potentially be beneficial in the treatment of negative and cognitive symptoms of schizophrenia.
Effects of a positive allosteric modulator of group II metabotropic glutamate receptors, LY487379, on cognitive flexibility and impulsive-like responding in rats
J Pharmacol Exp Ther 2010 Dec;335(3):665-73.PMID:20739457DOI:10.1124/jpet.110.170506.
Orthosteric group II metabotropic glutamate receptor (mGluR) agonists are regarded as novel, effective medications for all major symptom domains of schizophrenia, including cognitive disturbances. mGluR2s also can be affected in a more subtle way by positive allosteric modulators (PAMs) characterized by a unique degree of subtype selectivity and neuronal frequency-dependent activity. Because currently available treatments for schizophrenia do not improve cognitive dysfunction, the main aim of the present study was to examine the effects of a mGluR2 PAM, N-(4-(2-methoxyphenoxy)-phenyl-N-(2,2,2-trifluoroethylsulfonyl)-pyrid-3-ylmethylamine (LY487379), on rat cognitive flexibility and impulsive-like responding, assessed in an attentional set-shifting task (ASST) and a differential reinforcement of low-rate 72 s (DRL72) schedule of food reinforcement. In addition, in vivo microdialysis was used to assess the drug's impact on cortical levels of dopamine, norepinephrine, serotonin, and glutamate. Rats treated with LY487379 (30 mg/kg) required significantly fewer trials to criteria during the extradimensional shift phase of the ASST. Under a DRL72 schedule, LY487379 (30 mg/kg) decreased the response rate and increased the number of reinforcers obtained. These effects were accompanied by the shift of the frequency distribution of responses toward longer inter-response time durations. LY487379 significantly enhanced extracellular norepinephrine and serotonin levels in the medial prefrontal cortex. In summary, the present study demonstrates that a mGluR2 PAM, LY487379, promotes cognitive flexibility and facilitates behavioral inhibition. These procognitive effects may contribute to the therapeutic efficacy of agents stimulating mGluR2 in schizophrenia.
Evaluation of the effects of the mGlu2/3 antagonist LY341495 on dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset
Pharmacol Rep 2022 Aug;74(4):614-625.PMID:35761013DOI:10.1007/s43440-022-00378-9.
Background: We have previously demonstrated that the metabotropic glutamate 2 and 3 (mGlu2/3) antagonist LY341495 reverses the anti-dyskinetic and anti-psychotic benefits conferred by mGlu2 activation and serotonin 2A (5-HT2A) antagonism. Here, we hypothesised that a higher dose of LY341495, associated with a higher antagonistic effect at mGlu3 receptors, would result in a reduction of the reversal of mGlu2 activation and 5-HT2A blockade on dyskinesia, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Methods: After induction of parkinsonism with MPTP, marmosets entered 3 streams of experiments, in which the following treatments were administered, in combination with l-3,4-dihydroxyphenylalanine (L-DOPA), after which dyskinesia, psychosis-like behaviours (PLBs) and parkinsonism were rated: 1. vehicle/vehicle, LY354740 (mGlu2/3 orthosteric agonist)/vehicle, LY354740/LY341495 1 mg/kg and LY354740/LY341495 3 mg/kg; 2. vehicle/vehicle, LY487379 (mGlu2 positive allosteric modulator)/vehicle, LY487379/LY341495 1 mg/kg and LY487379/LY341495 3 mg/kg; 3. vehicle/vehicle, EMD-281,014 (5-HT2A antagonist)/vehicle, EMD-281,014/LY341495 1 mg/kg and EMD-281,014/LY341495 3 mg/kg. Results: Each of LY354740, LY487379 and EMD-281,014 reduced the severity of L-DOPA-induced dyskinesia, by 55%, 39% and 40%, respectively (all p < 0.001), as well as the severity of PLBs, by 48%, 36% and 41%, respectively (all p < 0.001). Adding LY341495 1 and 3 mg/kg to each of LY354740, LY487379 and EMD-281,014 resulted in a dose-dependent reversal of their anti-dyskinetic and anti-psychotic actions. No effect on the anti-parkinsonian action of L-DOPA was noted with any treatment combination. Conclusion: These results suggest that an antagonistic effect at mGlu3 receptors may not be sufficient to overcome the deleterious effect of mGlu2 blockade on dyskinesia in PD. It remains to be seen whether similar effects would have been obtained with a selective mGlu3 antagonist.
On the mechanism of anti-hyperthermic effects of LY379268 and LY487379, group II mGlu receptors activators, in the stress-induced hyperthermia in singly housed mice
Neuropharmacology 2012 Jan;62(1):322-31.PMID:21855555DOI:10.1016/j.neuropharm.2011.07.042.
Earlier studies have demonstrated that the agonists of the mGlu(2/3) receptors produced anxiolytic actions after peripheral administration. However, the mechanism of their action is still not clear. Therefore the aim of the present study was to specify the role of the GABAergic and serotonergic system in the mechanism of the anxiolytic activity of group II mGlu receptor activators by using the stress induced hyperthermia test (SIH) in singly housed mice. We used an orthosteric mGlu(2/3) receptor agonist, LY379268, which induced anti-hyperthermic efficacy in the doses of 1-5mg/kg (73% of inhibition after a highest dose). The effect of the second ligand used, a mGlu(2) receptor positive modulator (PAM), LY487379, was observed in a dose range of 0.5-5mg/kg and reached 53% of the inhibition. The blockade of GABAergic system by GABA(A) receptor antagonist flumazenil (10mg/kg) or GABA(B) receptor antagonist CGP55845 (10mg/kg), and the blockade of serotonergic system by 5-HT(1A) receptor antagonist WAY100635 (0.1 and 1mg/kg) or 5-HT(2A/2C) receptor antagonist ritanserin (0.5mg/kg) had no influence on the anti-hyperthermic effect induced by effective dose of LY379268. However, the action of the effective dose of LY487379 was enhanced when co-administered with flumazenil, WAY100635 (0.1mg/kg) and ritanserin. Similar results were observed for the subeffective dose of LY379268 (0.5mg/kg). WAY100635 in a dose of 1mg/kg did not induce any enhancing effect on the activity of compounds. Therefore, it seems that the antagonism towards GABA(A) receptors, presynaptic 5-HT(1A) and postsynaptic 5-HT(2A/2C) receptors is responsible for the phenomenon. This article is part of a Special Issue entitled 'Anxiety and Depression'.