Medicagol
(Synonyms: 苜蓿内酯) 目录号 : GC39038Medicagol 时可从Medicago sativa 分离得到的一种天然产物。
Cas No.:1983-72-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Medicagol, is a natural compound isolated from Medicago sativa[1].
[1]. TAKEHIKO FUKUNAGA, et al. Studies on the Constituents of Goat's Rue (Galega officinalis L.). Chemical and Pharmaceutical Bulletin. 1987.
Cas No. | 1983-72-8 | SDF | |
别名 | 苜蓿内酯 | ||
Canonical SMILES | O=C1C2=C(OC3=CC(OCO4)=C4C=C32)C5=CC=C(O)C=C5O1 | ||
分子式 | C16H8O6 | 分子量 | 296.23 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3758 mL | 16.8788 mL | 33.7576 mL |
5 mM | 0.6752 mL | 3.3758 mL | 6.7515 mL |
10 mM | 0.3376 mL | 1.6879 mL | 3.3758 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Screening of Potent Phytochemical Inhibitors Against SARS-CoV-2 Main Protease: An Integrative Computational Approach
Front Bioinform 2021 Oct 5;1:717141.PMID:36303755DOI:10.3389/fbinf.2021.717141.
Coronavirus disease 2019 (COVID-19) is a potentially lethal and devastating disease that has quickly become a public health threat worldwide. Due to its high transmission rate, many countries were forced to implement lockdown protocols, wreaking havoc on the global economy and the medical crisis. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus for COVID-19, represent an effective target for the development of a new drug/vaccine because it is well-conserved and plays a vital role in viral replication. Mpro inhibition can stop the replication, transcription as well as recombination of SARS-CoV-2 after the infection and thus can halt the formation of virus particles, making Mpro a viable therapeutic target. Here, we constructed a phytochemical dataset based on a rigorous literature review and explored the probability that various phytochemicals will bind with the main protease using a molecular docking approach. The top three hit compounds, Medicagol, faradiol, and flavanthrin, had binding scores of -8.3, -8.6, and -8.8 kcal/mol, respectively, in the docking analysis. These three compounds bind to the active groove, consisting of His41, Cys45, Met165, Met49, Gln189, Thr24, and Thr190, resulting in main protease inhibition. Moreover, the multiple descriptors from the molecular dynamics simulation, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and hydrogen bond analysis, confirmed the stable nature of the docked complexes. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed a lack of toxicity or carcinogenicity for the screened compounds. Our computational analysis may contribute toward the design of an effective drug against the main protease of SARS-CoV-2.
A new coumaronochromone from Sophora japonica
J Asian Nat Prod Res 2002 Mar;4(1):1-5.PMID:11991186DOI:10.1080/10286020290019622.
A new coumaronochromone derivative, sophorophenolone (1), along with 13 known compounds, l-maackiain (2), Medicagol (3), 7-O-methylpseudobaptigenin (4), pseudobaptigenin (5), 7,3'-di-O-methylorobol (6), genistein (7), prunetin (8), daidzein (9), formononetin (10), Di-O-methyldaidzein (11), quercetin (12), kaempferol (13) and isorhamnetin (14) were isolated from pericarps of Sophorajaponica L. The structure of compound 1 was established by UV, IR, MS, and one-dimensional and two-dimensional NMR spectroscopy, including DEPT, NOESY, 1H-1H COSY, HMQC, and HMBC experiments.
Phenolic Compounds from Cyclopia intermedia (Honeybush Tea). 1
J Agric Food Chem 1998 Sep;46(9):3406-10.PMID:27403732DOI:10.1021/jf980258x.
The processed leaves and stems of Cyclopia intermedia contain 4-hydroxycinnamic acid, the isoflavones formononetin, afrormosin, calycosin, pseudobaptigen, and fujikinetin, the flavanones naringenin, eriodictyol, hesperitin, and hesperidin, the coumestans Medicagol, flemichapparin, and sophoracoumestan B, the xanthones mangiferin and isomangiferin, the flavone luteolin, and the inositol (+)-pinitol.