Melanin
(Synonyms: 黑色素) 目录号 : GC30652Melanin是一种具有多功能的生物色素,可以抵御环境压力,如紫外线(UV),氧化剂和电离辐射。
Cas No.:8049-97-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Melanin is a unique pigment with myriad functions. It is multifunctional, providing defense against environmental stresses such as ultraviolet (UV) light, oxidizing agents and ionizing radiation.
Melanin contributes to the ability of fungi to survive in harsh environments. In addition, it plays a role in fungal pathogenesis. Melanin is an amorphous polymer that is produced by one of two synthetic pathways. Fungi may synthesize melanin from endogenous substrate via a 1,8-dihydroxynaphthalene (DHN) intermediate. Alternatively, some fungi produce melanin from L-3,4-dihydroxyphenylalanine (L-dopa)[1].
[1]. Eisenman HC, et al. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol. 2012 Feb;93(3):931-40.
Cas No. | 8049-97-6 | SDF | |
别名 | 黑色素 | ||
Canonical SMILES | [Melanin] | ||
分子式 | C18H10N2O4 | 分子量 | 318.28 |
溶解度 | DMSO : < 1 mg/mL (insoluble or slightly soluble); H2O : < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.1419 mL | 15.7094 mL | 31.4189 mL |
5 mM | 0.6284 mL | 3.1419 mL | 6.2838 mL |
10 mM | 0.3142 mL | 1.5709 mL | 3.1419 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Melanin
Melanin is an irregular light-absorbing polymer containing indoles and other intermediate products derived from the oxidation of tyrosine. Melanin is widely dispersed in the animal and plant kingdoms. It is the major pigment present in the surface structures of vertebrates. The critical step in melanin biogenesis is the oxidation of tyrosine by the enzyme tyrosinase. In vertebrates this enzyme is active only in specialized organelles in retinal pigment epithelium and melanocytes. In mammals melanin is formed as intracellular granules. Melanin granules are transferred from melanocytes to epithelial cells and form the predominant pigment of hair and epidermis. Melanin has many biological functions. Reactive quinone intermediates in the melanin biosynthetic pathway exhibit antibiotic properties and the polymer is an important strengthening element of plant cell walls and insect cuticle. Light absorption by melanin has several biological functions, including photoreceptor shielding, thermoregulation, photoprotection, camouflage and display. Melanin is a powerful cation chelator and may act as a free radical sink. Melanin is used commercially as a component of photoprotective creams, although mainly for its free radical scavenging rather than its light absorption properties. The pigment is also a potential target for anti-melanoma therapy.
Melanin
Melanins are a unique class of pigments found throughout the biosphere with a wide variety of functions, structures, and presentations. Cordero and Casadevall highlight the wide range of places melanins are found and the diverse functions they play in nature.
Methodology for evaluation of melanin content and production of pigment cells in vitro
Melanin has a photo-screening, a biophysical/biochemical and a cosmetic effect. Melanin content of cultured pigmented cells can be measured by spectrophotometry and expressed either as melanin content per cell or melanin content per culture (area). Melanin production can be calculated from melanin content and cell number at the beginning and at the end of a culture using various formulas and expressed as melanin production per cell per day or melanin production per culture per day. Melanin content or production per cell have been used widely to compare melanin content in various cell lines or to compare the melanin content during different stages in the culture (e.g. growing stage and senescent stage). For the evaluation of changes in melanin content and production in a given pigment cell line after treatment with a special chemical, physical or biological stimulator or inhibitor, different parameters used for the evaluation of experimental data can lead to conflicting results. Melanin content per area is determined by melanin content per cell and the number of cells in this area. The biological and cosmetic effects of melanin in vivo are determined mainly by melanin content per area, not melanin content per cell. For example, if melanin content per cell is the same, but the number of cells in a given area is increased after the treatment, then the melanin content per area is also increased. Under this circumstance, the color of skin turns darker and the total antioxidant activity provided by melanin in this area is increased even though the melanin content per cell measured remains the same; therefore, melanin content or production per culture is more important than melanin content or production per cell under this circumstance.
Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications
Melanin is a common name for a group of biopolymers with the dominance of potential applications in medical sciences, cosmeceutical, bioremediation, and bioelectronic applications. The broad distribution of these pigments suggests their role to combat abiotic and biotic stresses in diverse life forms. Biosynthesis of melanin in fungi and bacteria occurs by oxidative polymerization of phenolic compounds predominantly by two pathways, 1,8-dihydroxynaphthalene [DHN] or 3,4-dihydroxyphenylalanine [DOPA], resulting in different kinds of melanin, i.e., eumelanin, pheomelanin, allomelanin, pyomelanin, and neuromelanin. The enzymes responsible for melanin synthesis belong mainly to tyrosinase, laccase, and polyketide synthase families. Studies have shown that manipulating culture parameters, combined with recombinant technology, can increase melanin yield for large-scale production. Despite significant efforts, its low solubility has limited the development of extraction procedures, and heterogeneous structural complexity has impaired structural elucidation, restricting effective exploitation of their biotechnological potential. Innumerable studies have been performed on melanin pigments from different taxa of life in order to advance the knowledge about melanin pigments for their efficient utilization in diverse applications. These studies prompted an urgent need for a comprehensive review on melanin pigments isolated from microorganisms, so that such review encompassing biosynthesis, bioproduction, characterization, and potential applications would help researchers from diverse background to understand the importance of microbial melanins and to utilize the information from the review for planning studies on melanin. With this aim in mind, the present report compares conventional and modern ideas for environment-friendly extraction procedures for melanin. Furthermore, the characteristic parameters to differentiate between eumelanin and pheomelanin are also mentioned, followed by their biotechnological applications forming the basis of industrial utilization. There lies a massive scope of work to circumvent the bottlenecks in their isolation and structural elucidation methodologies.
Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors
Cell membrane coating has emerged as an intriguing biomimetic strategy to endow nanomaterials with functions and properties inherent to source cells for various biomedical applications. Hybrid membrane of different types of cells could be coated onto nanoparticle surface to achieve additional functions. Herein, we fused red blood cell (RBC) membrane together with MCF-7 cell membrane and fabricated an erythrocyte-cancer (RBC-M) hybrid membrane-camouflaged melanin nanoparticle (Melanin@RBC-M) platform for enhancing therapeutic efficacy of photothermal therapy (PTT). The fused RBC-M hybrid membrane vesicles retained both RBC and MCF-7 cell membrane proteins and the resultant Melanin@RBC-M exhibited prolonged blood circulation and homotypic targeting to source MCF-7 cells simultaneously. Interestingly, increasing MCF-7 membrane components in RBC-M significantly enhanced the homotypic targeting function of Melanin@RBC-M while increasing RBC membrane components in RBC-M effectively reduced the cellular uptake of Melanin@RBC-M by macrophages and improved their circulation time in the blood. After intravenous injection into MCF-7 tumor-bearing athymic nude mice, Melanin@RBC-M with 1:1 membrane protein weight ratio of RBC to MCF-7 exhibited significantly higher tumor accumulation and better PTT efficacy compared with other Melanin@RBC-M with different membrane protein weight ratios as well as pristine melanin nanoparticles, due to the optimal balance between prolonged blood circulation and homotypic targeting. In addition, in vitro photoacoustic results revealed that Melanin@RBC-M had a photoacoustic signal enhancement with the increase of nanoparticle size (64 → 148 nm) and the photoacoustic amplitudes increased linearly with nanoparticle concentration at the excitation wavelength ranged from 680 nm to 800 nm, which could be used for quantification of Melanin@RBC-M in vivo. Looking forward, coating hybrid membrane onto nanoparticles could add flexibility and controllability in enhancing nanoparticles functionality and offer new opportunities for biomedical applications.