Home>>Signaling Pathways>> GPCR/G protein>> mGluR >>Methoxy-PEPy

Methoxy-PEPy Sale

(Synonyms: 3-甲氧基-5-(2-吡啶基乙炔基)吡啶) 目录号 : GC30991

Methoxy-PEPy是mGlu5受体高效选择性抑制剂,IC50值为1nM。

Methoxy-PEPy Chemical Structure

Cas No.:524924-76-3

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥891.00
现货
2mg
¥770.00
现货
5mg
¥810.00
现货
10mg
¥1,350.00
现货
50mg
¥4,050.00
现货
100mg
¥6,750.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Methoxy-PEPy is a potent and highly selective mGlu5 receptor antagonist with IC50 of 1 nM.IC50 value: 1 nM [1]Target: mGlu5R inhibitorAdministration of [3H]methoxy-PEPy (50 microCi/kg i.v.) to mGlu5 receptor-deficient mice revealed binding at background levels in forebrain, whereas wild-type mice exhibited 14-fold higher binding in forebrain relative to cerebellum [2]. The calcium transients stimulated by these agonists were potently inhibited by reference allosteric mGlu5 antagonists - 2-methyl-6-(phenylethynyl)pyridine (MPEP), 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and 3-methoxy-5-(pyridine-2-ylethynyl)pyridine (methoxy-PEPy) (IC(50) ranges: 0.8-66 nM) [3].

[1]. Cosford ND, et al. [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett. 2003 Feb 10;13(3):351-4. [2]. Anderson JJ, et al. In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine). Eur J Pharmacol. 2003 Jul 18;473(1):35-40. [3]. Salisbury BG, et al. Inducible expression and pharmacological characterization of the mouse metabotropic glutamate 5b receptor. Eur J Pharmacol. 2008 Jan 28;579(1-3):34-9.

Chemical Properties

Cas No. 524924-76-3 SDF
别名 3-甲氧基-5-(2-吡啶基乙炔基)吡啶
Canonical SMILES COC1=CC(C#CC2=NC=CC=C2)=CN=C1
分子式 C13H10N2O 分子量 210.23
溶解度 DMSO : 100 mg/mL (475.67 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.7567 mL 23.7835 mL 47.567 mL
5 mM 0.9513 mL 4.7567 mL 9.5134 mL
10 mM 0.4757 mL 2.3783 mL 4.7567 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

[3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor

The design, synthesis, and characterization of two potent, non-competitive radioligands, [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy, that are selective for the mGlu5 receptor are described.

In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine)

In vivo receptor occupancy of mGlu5 receptor antagonists was quantified in rat and mouse brain using the mGlu5 receptor selective antagonist [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine) ([3H]methoxy-PEPy). Administration of [3H]methoxy-PEPy (50 microCi/kg i.v.) to mGlu5 receptor-deficient mice revealed binding at background levels in forebrain, whereas wild-type mice exhibited 14-fold higher binding in forebrain relative to cerebellum. Systemic administration of the mGlu5 receptor antagonists 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) reduced the binding of [3H]methoxy-PEPy in rats and mice, reflecting mGlu5 receptor occupancy by these compounds. MPEP (10 mg/kg i.p.) and MTEP (3 mg/kg i.p.) maintained >75% receptor occupancy for 2 h in rats, while in mice MPEP and MTEP achieved >75% occupancy for only 30 and 15 min, respectively. Compound levels in plasma were substantially lower in mice suggesting species differences in receptor occupancy result from differences in absorption or metabolism of the compounds. These findings demonstrate that [3H]methoxy-PEPy is useful for determining the occupancy of mGlu5 receptors in the brain.

"Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu5 Allosteric Ligands

Numerous positive and negative allosteric modulators (PAMs and NAMs) of class C G protein-coupled receptors (GPCRs) have been developed as valuable preclinical pharmacologic tools and therapeutic agents. Although many class C GPCR allosteric modulators have undergone subtype selectivity screening, most assay paradigms have failed to perform rigorous pharmacologic assessment. Using mGlu5 as a representative class C GPCR, we tested the hypothesis that allosteric modulator selectivity was based on cooperativity rather than affinity. Specifically, we aimed to identify ligands that bound to mGlu5 but exhibited neutral cooperativity with mGlu5 agonists. We additionally evaluated the potential for these ligands to exhibit biased pharmacology. Radioligand binding, intracellular calcium (iCa2+) mobilization, and inositol monophosphate (IP1) accumulation assays were undertaken in human embryonic kidney cells expressing low levels of rat mGlu5 (HEK293A-mGlu5-low) for diverse allosteric chemotypes. Numerous "non-mGlu5" class C GPCR allosteric modulators incompletely displaced allosteric mGlu5 radioligand [3H]methoxy-PEPy binding, consistent with a negative allosteric interaction. Affinity estimates for CPCCOEt (mGlu1 ligand), PHCCC (mGlu4 ligand), GS39783 (GABAB ligand), AZ12216052 (mGlu8 ligand), and CGP7930 (GABAB ligand) at mGlu5 were within 10-fold of their target receptor. Most class C GPCR allosteric modulators had neutral cooperativity with both orthosteric and allosteric mGlu5 agonists in functional assays; however, NPS2143 (calcium-sensing receptor (CaSR) NAM), cinacalcet (CaSR PAM), CGP7930, and AZ12216052 were partial mGlu5 agonists for IP1 accumulation, but not iCa2+ mobilization. By using mGlu5 as a model class C GPCR, we find that for many class C GPCR allosteric modulators, subtype selectivity is driven by cooperativity and misinterpreted owing to unappreciated bias.

Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology

Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.

Inducible expression and pharmacological characterization of the mouse metabotropic glutamate 5b receptor

The metabotropic glutamate receptor subtype 5 (mGlu5) and glutamatergic neurotransmission are associated with the pathophysiology of disorders such as anxiety, depression or chronic pain. Human and rat mGlu5 receptors have been cloned and characterized previously. We now describe the cloning of the mouse mGlu5b receptor gene from adult mouse brain and its expression using an ecdysone-inducible system. This subtype has an extra 96 bp sequence which is inserted to the cytoplasmic tail and is identical to the insert present in human and rat mGlu5b. Mouse mGlu5b receptor expression was induced in HEK-293EcR cells by incubation with ponasterone A, an analogue of the insect hormone ecdysone. A fluorometric calcium transient assay system was used to characterize the basic pharmacologic profile of an isolated stable cell line. Quisqualic acid was the most potent receptor agonist (EC(50) approximately 7 nM) although the cells also responded to l-glutamic acid and the Group I-selective receptor agonist, 3,5-dihydroxyphenylglycine (3,5-DHPG). The calcium transients stimulated by these agonists were potently inhibited by reference allosteric mGlu5 antagonists - 2-methyl-6-(phenylethynyl)pyridine (MPEP), 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and 3-methoxy-5-(pyridine-2-ylethynyl)pyridine (methoxy-PEPy) (IC(50) ranges: 0.8-66 nM). The availability of this mouse mGlu5b receptor-expressing cell line will facilitate in vitro characterization of mGlu5 receptor-selective agonists or antagonists prior to in vivo pharmacologic testing.