MF-094
目录号 : GC34670MF-094, a potent and selective USP30 inhibitor (IC50=0.12 μM), accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome.
Cas No.:2241025-68-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
MF-094, a potent and selective USP30 inhibitor (IC50=0.12 μM), accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome.
MF-094 restores viability and migration of AGE-treated HSF2 cells. MF-094 treatment decreases protein levels of NLRP3 and its downstream target caspase-1 p20.[2]
MF-094 treatment facilitates wound healing in diabetic rats.[2]
[1] Kluge AF, et al. Bioorg Med Chem Lett. 2018 Aug 15;28(15):2655-2659. [2] Li X, et al. Exp Cell Res. 2022 Jan 15;410(2):112967.
Cas No. | 2241025-68-1 | SDF | |
Canonical SMILES | O=C(NC1=CC=CC2=C1C=CC=C2S(=O)(NC(C)(C)C)=O)[C@@H](NC(C3CCCCC3)=O)CC4=CC=CC=C4 | ||
分子式 | C30H37N3O4S | 分子量 | 535.7 |
溶解度 | DMSO : 125 mg/mL (233.34 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8667 mL | 9.3336 mL | 18.6672 mL |
5 mM | 0.3733 mL | 1.8667 mL | 3.7334 mL |
10 mM | 0.1867 mL | 0.9334 mL | 1.8667 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
MF-094 nanodelivery inhibits oral squamous cell carcinoma by targeting USP30
Background: Oral squamous cell carcinoma (OSCC) is a common head and neck cancer, and the incidence of OSCC is increasing. As the mortality of OSCC keeps increasing, it is crucial to clarify its pathogenesis and develop new therapeutic strategies. Methods: Confocal laser scanning microscopy was used to evaluate the uptake of nanoparticles (NPs). The potential functions of USP30 were evaluated by cell counting kit (CCK)-8, flow cytometry, biochemical assay, coimmunoprecipitation, qRT-PCR, and immunoblotting. The antitumor effect of NP-loaded USP30 inhibitor MF-094 was evaluated in vitro and in vivo. Results: In this study, increased USP30 expression was found in OSCC specimens and cell lines through qRT-PCR and immunoblotting. CCK-8, flow cytometry, and biochemical assay revealed that the deubiquitylated catalytic activity of USP30 contributed to cell viability and glutamine consumption of OSCC. Subsequently, USP30 inhibitor MF-094 was loaded in ZIF-8-PDA and PEGTK to fabricate ZIF-8-PDA-PEGTK nanoparticles, which exhibited excellent inhibition of cell viability and glutamine consumption of OSCC, both in vitro and in vivo. Conclusion: The results indicated the clinical significance of USP30 and showed that nanocomposites provide a targeted drug delivery system for treating OSCC.
MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome
Diabetes is a prevalent disease worldwide that can result in several complications, including renal failure, blindness, and amputation. Diabetic foot ulcers, which have the characteristics of chronic wounds, are a devastating component of diabetes progression that can lead to lower extremity amputation. In this study, we set out to investigate the mechanisms involved in wound healing of diabetic foot ulcers. The expression of USP30 in skin tissues of patients with diabetic foot ulcers and HSF2 human skin fibroblasts treated with advanced glycation end (AGE) products was detected by qRT-PCR, and CCK-8, cell scratch and ELISA assay were used to detect cell viability, migration and levels of Col I, Col III, MMP-2, MMP-9, IL-1β and IL-18. The interaction between USP30 and NLRP3 was verified by co-immunoprecipitation and ubiquitination assays. The expression of USP30, NLRP3 and caspase-1 p20 was detected by Western blot. USP30 inhibitor MF-094 was used to treat diabetic rat model established by streptozotocin (STZ). We found that USP30, a deubiquitinase, was upregulated in skin tissues of patients with diabetic foot ulcers compared with normal skin tissues. In vitro, we found that treatment of HSF2 human skin fibroblasts with advanced glycation end (AGE) products, known to contribute to diabetic complications, resulted in suppressed viability and migration of HSF2 cells, as well as increased levels of USP30 mRNA and protein. Functionally, downregulation of USP30 via shRNA-mediated knockdown or treatment with the USP30 inhibitor MF-094, restored viability and migration of AGE-treated HSF2 cells. We identified the NLRP3 inflammasome as a critical target of USP30 in AGE-induced functions. Mechanistically, we demonstrate that USP30 activates the NLRP3 inflammasome by deubiquitinating NLRP3. Finally, we show that inhibition of USP30 via MF-094 treatment facilitated wound healing in diabetic rats and resulted in decreased protein levels of NLRP3 and its downstream target caspase-1 p20, thus establishing the physiological importance of the identified USP30-NLRP3 link. Together, our findings suggest a therapeutic potential for USP30 in diabetic foot ulcers.
Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells
Preeclampsia (PE) is a pregnancy disorder characterized by excessive trophoblast cell death. This study aims to explore the exact mechanism of the ubiquitination level of FUN14 domain containing 1 (FUNDC1) in mitophagy and injury in hypoxic trophoblast cells. In this study, HTR-8/SVneo trophoblast cells were cultured under normoxic and hypoxic conditions and PE mouse model was established. We found low ubiquitination level of FUNDC1 in hypoxic trophoblast cells and placenta of pregnant women with PE. Proteasome inhibitor MG-132 and protease activator MF-094 were added into HTR-8/SVneo trophoblast cells. Proteasome inhibitor MG-132 decreased FUNDC1 ubiquitination level while protease activator MF-094 increased FUNDC1 ubiquitination level. Inhibition of FUNDC1 ubiquitination promoted mitophagy and mitochondrial membrane potential (Δψm) in normoxic trophoblast cells, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, FUNDC1 ubiquitination alleviated cell injury in PE mice in vivo. In conclusion, increased FUNDC1 ubiquitination level inhibited mitophagy and Δψm changes in hypoxic trophoblast cells, and thus alleviated oxidative injury.
Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy
Mitophagy is one of the processes that cells use to maintain overall health. An E3 ligase, parkin, ubiquitinates mitochondrial proteins prior to their degradation by autophagasomes. USP30 is an enzyme that de-ubiquitinates mitochondrial proteins; therefore, inhibiting this enzyme could foster mitophagy. Herein, we disclose the structure-activity relationships (SAR) within a novel series of highly selective USP30 inhibitors. Two structurally similar compounds, MF-094 (a potent and selective USP30 inhibitor) and MF-095 (a significantly less potent USP30 inhibitor), serve as useful controls for biological evaluation. We show that MF-094 increases protein ubiquitination and accelerates mitophagy.