MK-4256
目录号 : GC31349MK-4256是一种有效的选择性SSTR3拮抗剂。在人和小鼠受体结合测定中,IC50分别为0.66nM和0.36nM。
Cas No.:1104599-69-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Animal experiment: |
Mice[1] To demonstrate that the observed glucose lowering by MK-4256 is SSTR3-dependent, the effect of a maximally efficacious dosage of MK-4256 on blood glucose excursion during an oGTT was investigated in SSTR3 KO mice. Administration of MK-4256 (1 mg/kg) and compound A (1 mg/kg; des-F-sitagliptin, a DPP-4 inhibitor included as a positive control) to age-matched C57BL/6N male WT mice significantly inhibits blood glucose excursion by 112 and 91%, respectively. |
References: [1]. He S, et al. The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes. ACS Med Chem Lett. 2012 May 7;3(6):484-9. |
MK-4256 is a potent and selective SSTR3 antagonist with IC50s of 0.66 nM and 0.36 nM in human and mouse receptor binding assays, respectively.
MK-4256 has excellent selectivity against other SSTR subtypes based on in vitro assays. In human receptor binding assays, MK-4256 has IC50s >2 μM for SSTR1 and SSTR2. Although the binding IC50 values on SSTR4 and SSTR5 are below 1 μM, there is still >500-fold selectivity. MK-4256 is tested in functional antagonist assays against SSTR4 and SSTR5. The IC50 values are greater than 5 μM (at least 5000-fold selectivity)[1]. MK-4256 inhibits radiolabeled MK-499 binding of the hERG channel with an IC50=1.74 μM. In a functional patch clamp assay, MK-4256 exhibits 50% blockade of hERG at 3.4 μM concentration[2].
MK-4256 reduces glucose excursion in a dose-dependent fashion with maximal efficacy achieves at doses as low as 0.03 mg/kg po. MK-4256 demonstrates exceptional SSTR3-mediated glucose-lowering efficacy in the mouse oGTT model with minimal hypoglycemia risk. MK-4256 achieves complete ablation of glucose excursion (109%) at 1 mg/kg po. MK-4256 reduces the glucose excursion from 0.003 to 10 mg/kg in a dose-dependent manner. The plasma Cmax of MK-4256 is determined from parallel mouse PK studies. At 0.01, 0.1, and 1 mg/kg oral dose, MK-4256 achieves Cmax of 7, 88, and 493 nM, respectivley[1].
[1]. He S, et al. The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes. ACS Med Chem Lett. 2012 May 7;3(6):484-9. [2]. He S, et al. Investigation of Cardiovascular Effects of Tetrahydro-β-carboline sstr3 antagonists. ACS Med Chem Lett. 2014 Apr 21;5(7):748-53.
Cas No. | 1104599-69-0 | SDF | |
Canonical SMILES | CN1N=CC([C@@]2(C3=NOC(C)=N3)N[C@@H](C4=NC=C(C5=CC=C(F)C=C5)N4)CC6=C2NC7=C6C=CC=C7)=C1 | ||
分子式 | C27H23FN8O | 分子量 | 494.52 |
溶解度 | DMSO : ≥ 100 mg/mL (202.22 mM);Water : < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.0222 mL | 10.1108 mL | 20.2216 mL |
5 mM | 0.4044 mL | 2.0222 mL | 4.0443 mL |
10 mM | 0.2022 mL | 1.0111 mL | 2.0222 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes
A structure-activity relationship study of the imidazolyl-β-tetrahydrocarboline series identified MK-4256 as a potent, selective SSTR3 antagonist, which demonstrated superior efficacy in a mouse oGTT model. MK-4256 reduced glucose excursion in a dose-dependent fashion with maximal efficacy achieved at doses as low as 0.03 mg/kg po. As compared with glipizide, MK-4256 showed a minimal hypoglycemia risk in mice.
SAR exploration at the C-3 position of tetrahydro-β-carboline sstr3 antagonists
MK-4256, a tetrahydro-β-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-β-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.
Discovery of substituted (4-phenyl-1H-imidazol-2-yl)methanamine as potent somatostatin receptor 3 agonists
We report SAR studies on a novel non-peptidic somatostatin receptor 3 (SSTR3) agonist lead series derived from (4-phenyl-1H-imidazol-2-yl)methanamine. This effort led to the discovery of a highly potent low molecular weight SSTR3 agonist 5c (EC50=5.2 nM, MW=359). The results from molecular overlays of 5c onto the L-129 structure indicate good alignment, and two main differences of the proposed overlays of the antagonist MK-4256 onto the conformation of 5c lead to inversion of antagonism to agonism.
Investigation of Cardiovascular Effects of Tetrahydro-β-carboline sstr3 antagonists
Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.