Home>>Signaling Pathways>> Microbiology & Virology>> SARS-CoV>>ML188

ML188 Sale

目录号 : GC39497

ML188 is a non-covalent SARS-CoV 3CLpro inhibitor with IC50 of 1.5 μM. ML188 has antiviral activity.

ML188 Chemical Structure

Cas No.:1417700-13-0

规格 价格 库存 购买数量
5mg
¥3,870.00
现货
10mg
¥6,300.00
现货
50mg
¥15,319.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ML188 is a non-covalent SARS-CoV 3CLpro inhibitor with IC50 of 1.5 μM. ML188 has antiviral activity.

[1] Jon Jacobs, et al. J Med Chem. 2013 Jan 24;56(2):534-46.

Chemical Properties

Cas No. 1417700-13-0 SDF
Canonical SMILES O=C(NC(C)(C)C)[C@@H](C1=CN=CC=C1)N(C(C=C2)=CC=C2C(C)(C)C)C(C3=CC=CO3)=O
分子式 C26H31N3O3 分子量 433.54
溶解度 DMSO: 250 mg/mL (576.65 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3066 mL 11.533 mL 23.0659 mL
5 mM 0.4613 mL 2.3066 mL 4.6132 mL
10 mM 0.2307 mL 1.1533 mL 2.3066 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188

Viruses 2021 Jan 25;13(2):174.PMID:33503819DOI:10.3390/v13020174.

Viral proteases are critical enzymes for the maturation of many human pathogenic viruses and thus are key targets for direct acting antivirals (DAAs). The current viral pandemic caused by SARS-CoV-2 is in dire need of DAAs. The Main protease (Mpro) is the focus of extensive structure-based drug design efforts which are mostly covalent inhibitors targeting the catalytic cysteine. ML188 is a non-covalent inhibitor designed to target SARS-CoV-1 Mpro, and provides an initial scaffold for the creation of effective pan-coronavirus inhibitors. In the current study, we found that ML188 inhibits SARS-CoV-2 Mpro at 2.5 µM, which is more potent than against SAR-CoV-1 Mpro. We determined the crystal structure of ML188 in complex with SARS-CoV-2 Mpro to 2.39 Å resolution. Sharing 96% sequence identity, structural comparison of the two complexes only shows subtle differences. Non-covalent protease inhibitors complement the design of covalent inhibitors against SARS-CoV-2 main protease and are critical initial steps in the design of DAAs to treat CoVID 19.

Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: homology modelling and molecular dynamic studies

BMC Struct Biol 2015 Apr 28;15:8.PMID:25928480DOI:10.1186/s12900-015-0035-3.

Background: The coronavirus 3 chymotrypsin-like protease (3CL(pro)) is a validated target in the design of potential anticoronavirus inhibitors. The high degree of homology within the protease's active site and substrate conservation supports the identification of broad spectrum lead compounds. A previous study identified the compound ML188, also termed 16R, as an inhibitor of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) 3CL(pro). This study will detail the generation of a homology model of the 3CL(pro) of the human coronavirus OC43 and determine the potential of 16R to form a broad-spectrum lead compound. MODELLER was used to generate a suitable three-dimensional model of the OC43 3CL(pro) and the Prime module of Schrӧdinger predicted the binding conformation and free energy of binding of 16R within the 3CL(pro) active site. Molecular dynamics further confirmed ligand stability and hydrogen bonding networks. Results: A high quality homology model of the OC43 3CL(pro) was successfully generated in an active conformation. Further studies reproduced the binding pose of 16R within the active site of the generated model, where its free energy of binding was shown to equal that of the 3CL(pro) of SARS-CoV, a receptor it is experimentally proven to inhibit. The stability of the ligand was subsequently confirmed by molecular dynamics. Conclusion: The lead compound 16R may represent a broad-spectrum inhibitor of the 3CL(pro) of OC43 and potentially other coronaviruses. This study provides an atomistic structure of the 3CL(pro) of OC43 and supports further experimental validation of the inhibitory effects of 16R. These findings further confirm that the 3CL(pro) of coronaviruses can be inhibited by broad spectrum lead compounds.

Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease

J Med Chem 2013 Jan 24;56(2):534-46.PMID:23231439DOI:10.1021/jm301580n.

A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). Unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure-activity relationships within S(1'), S(1), and S(2) enzyme binding pockets. The X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.

In silico exploration of novel protease inhibitors against coronavirus 2019 (COVID-19)

Inform Med Unlocked 2021;23:100516.PMID:33457495DOI:10.1016/j.imu.2021.100516.

The spread of SARS-CoV-2 has affected human health globally. Hence, it is necessary to rapidly find the drug-candidates that can be used to treat the infection. Since the main protease (Mpro) is the key protein in the virus's life cycle, Mpro is served as one of the critical targets of antiviral treatment. We employed virtual screening tools to search for new inhibitors to accelerate the drug discovery process. The hit compounds were subsequently docked into the active site of SARS-CoV-2 main protease and ranked by their binding energy. Furthermore, in-silico ADME studies were performed to probe for adoption with the standard ranges. Finally, molecular dynamics simulations were applied to study the protein-drug complex's fluctuation over time in an aqueous medium. This study indicates that the interaction energy of the top ten retrieved compounds with COVID-19 main protease is much higher than the interaction energy of some currently in use protease drugs such as ML188, nelfinavir, lopinavir, ritonavir, and α-ketoamide. Among the discovered compounds, Pubchem44326934 showed druglike properties and was further analyzed by MD and MM/PBSA approaches. Besides, the constant binding free energy over MD trajectories suggests a probable drug possessing antiviral properties. MD simulations demonstrate that GLU166 and GLN189 are the most important residues of Mpro, which interact with inhibitors.

Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study

Int J Mol Sci 2023 Feb 20;24(4):4237.PMID:36835648DOI:10.3390/ijms24044237.

The indispensable role of the SARS-CoV-2 main protease (Mpro) in the viral replication cycle and its dissimilarity to human proteases make Mpro a promising drug target. In order to identify the non-covalent Mpro inhibitors, we performed a comprehensive study using a combined computational strategy. We first screened the ZINC purchasable compound database using the pharmacophore model generated from the reference crystal structure of Mpro complexed with the inhibitor ML188. The hit compounds were then filtered by molecular docking and predicted parameters of drug-likeness and pharmacokinetics. The final molecular dynamics (MD) simulations identified three effective candidate inhibitors (ECIs) capable of maintaining binding within the substrate-binding cavity of Mpro. We further performed comparative analyses of the reference and effective complexes in terms of dynamics, thermodynamics, binding free energy (BFE), and interaction energies and modes. The results reveal that, when compared to the inter-molecular electrostatic forces/interactions, the inter-molecular van der Waals (vdW) forces/interactions are far more important in maintaining the association and determining the high affinity. Given the un-favorable effects of the inter-molecular electrostatic interactions-association destabilization by the competitive hydrogen bond (HB) interactions and the reduced binding affinity arising from the un-compensable increase in the electrostatic desolvation penalty-we suggest that enhancing the inter-molecular vdW interactions while avoiding introducing the deeply buried HBs may be a promising strategy in future inhibitor optimization.