Home>>Signaling Pathways>> PI3K/Akt/mTOR Signaling>> mTOR>>MTI-31

MTI-31 Sale

(Synonyms: LXI-15029) 目录号 : GC64304

MTI-31 (LXI-15029) is a novel mTORC1/mTORC2 inhibitor with Kd of 0.2 nM in mTOR binding assays and displays >5,000-fold selectivity over PIK3CA, PIK3CB and PIK3G.

MTI-31 Chemical Structure

Cas No.:1567915-38-1

规格 价格 库存 购买数量
1mg
¥2,160.00
现货
5mg
¥4,950.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

MTI-31 (LXI-15029) is a novel mTORC1/mTORC2 inhibitor with Kd of 0.2 nM in mTOR binding assays and displays >5,000-fold selectivity over PIK3CA, PIK3CB and PIK3G.

[1] Jianchang Qian, et al. Oncotarget . 2016 Oct 11;7(41):67071-67086.

Chemical Properties

Cas No. 1567915-38-1 SDF Download SDF
别名 LXI-15029
分子式 C26H30N6O3 分子量 474.55
溶解度 DMSO : 8.33 mg/mL (17.55 mM; ultrasonic and warming and heat to 60°C) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1073 mL 10.5363 mL 21.0726 mL
5 mM 0.4215 mL 2.1073 mL 4.2145 mL
10 mM 0.2107 mL 1.0536 mL 2.1073 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes

J Control Release 2019 Dec 28;316:381-392.PMID:31730912DOI:10.1016/j.jconrel.2019.11.005.

Liposomes with peptide motifs have been successfully used in glioma-targeted delivery of various general chemotherapy agents. However, their use for the encapsulation of low-toxicity molecularly targeted anticancer agents has been limited. In the present study, we aimed to assess the efficacy and safety of a novel low-toxicity mTORC1/mTORC2 inhibitor (MTI-31) as a treatment for glioma when encapsulated in appropriate liposomes. Since some of the peptide-modified liposomes have been determined to be immunogenic and may have life-threatening consequences in mice, an immunogenicity-based investigation with candidate liposomal carriers was conducted. Following this study, DVAP (DPDADVDRDTDNDS) modified liposomes (DVAP-liposomes) were identified as an immunologically safe carrier and therefore utilized for MTI-31 encapsulation. DVAP is a tumor homing peptide exhibiting high binding affinity to glucose regulated protein 78 (GRP78) overexpressed in glioma, glioma stem cells, vasculogenic mimicry and neovasculature. Modification of liposomes with DVAP imparts a glioma-directing property. In vitro, the developed DVAP-liposomes/MTI-31 were efficiently internalized by U87 cells and consequently showed a potent antiproliferation effect. In vivo, the safety and anti-glioma efficiency of DVAP-liposomes/MTI-31 were validated in intracranial glioma bearing BALB/c nude mice. While showing both systemic and immunological safety, DVAP-liposome/MTI-31 treatment resulted in a significant improvement in the median survival time (24.5 days for saline, 26 days for free MTI-31, 25 days for liposomes/MTI-31 and 36 days for DVAP-liposome/MTI-31). The results highlight MTI-31 as an effective anti-glioma agent when encapsulated in non-immunogenic glioma-targeted liposomes, which may contribute to the development of better anti-glioma treatment.

A Novel mTORC1/2 Inhibitor (MTI-31) Inhibits Tumor Growth, Epithelial-Mesenchymal Transition, Metastases, and Improves Antitumor Immunity in Preclinical Models of Lung Cancer

Clin Cancer Res 2019 Jun 15;25(12):3630-3642.PMID:30796032DOI:10.1158/1078-0432.CCR-18-2548.

Purpose: We aimed to investigate efficacy and mechanism of MTI-31 (LXI-15029), a novel mTORC1/mTORC2 inhibitor currently in human trial (NCT03125746), in non-small cell lung cancer (NSCLC) models of multiple driver mutations and tyrosine kinase inhibitor (TKI)-resistance. Experimental design: Gene depletion, inhibitor treatment, immunological, flow cytometry, cellular, and animal studies were performed to determine in vitro and in vivo efficacy in NSCLC models of driver mutations and elucidate roles by mTOR complexes in regulating migration, epithelial-mesenchymal transition (EMT), metastasis, intracranial tumor growth, and immune-escape. Results: MTI-31 potently inhibited cell proliferation (IC50 <1 μmol/L) and in vivo tumor growth in multiple NSCLC models of EGFR/T790M, EML4-ALK, c-Met, or KRAS (MED <10 mg/kg). In EGFR-mutant and/or EML4-ALK-driven NSCLC, MTI-31 or disruption of mTORC2 reduced cell migration, hematogenous metastasis to the lung, and abrogated morphological and functional traits of EMT. Disruption of mTORC2 inhibited EGFR/T790M-positive tumor growth in mouse brain and prolonged animal survival correlating a diminished tumor angiogenesis and recruitment of IBA1+ microglia/macrophages in tumor microenvironment. MTI-31 also suppressed programmed death ligand 1 (PD-L1) in EGFR- and ALK-driven NSCLC, mediated in part by mTORC2/AKT/GSK3β-dependent proteasomal degradation. Depletion of mTOR protein or disruption of mTOR complexes profoundly downregulated PD-L1 and alleviated apoptosis in Jurkat T and primary human T cells in a tumor-T cell coculture system. Conclusions: Our results highlight mTOR as a multifaceted regulator of tumor growth, metastasis, and immune-escape in EGFR/ALK-mutant and TKI-resistant NSCLC cells. The newly characterized mechanisms mediated by the rapamycin-resistant mTORC2 warrant clinical investigation of mTORC1/mTORC2 inhibitors in patients with lung cancer.

Molecular regulation of apoptotic machinery and lipid metabolism by mTORC1/mTORC2 dual inhibitors in preclinical models of HER2+/PIK3CAmut breast cancer

Oncotarget 2016 Oct 11;7(41):67071-67086.PMID:27563814DOI:10.18632/oncotarget.11490.

The mechanistic target of rapamycin (mTOR) is a rational target for cancer treatment. While the mTORC1-selective rapalogs have shown significant benefits in the clinic, antitumor response may be further improved by inhibiting both mTORC1 and mTORC2. Herein, we established target profile of a novel mTOR kinase inhibitor (mTOR-KI) MTI-31 and employed it to study new therapeutic mechanism in breast cancer. MTI-31 demonstrated a potent mTOR binding affinity with >5000 fold selectivity over the related PI3K family isoforms. MTI-31 inhibited mTORC1- and mTORC2 function at ≤120 nM in cellular assays or 5 mg/kg orally in tumor-bearing mice. In a panel of breast cancer lines, the antitumor efficacy of MTI-31 was dependent on HER2+ and/or PIK3CAmut (HER2+/PIK3CAmut) status of the tumors and required mTORC2-specific modulation of Bim, MCL-1 and GSK3. Inactivation of Bim or GSK3 each attenuated apoptotic death resulting in mTOR-KI resistance. The antitumor response also required a suppression of lipid metabolism in therapy-sensitive tumors. Treatment with MTI-31 or AZD8055 substantially reduced lipogenesis and acetyl-CoA homeostasis, which was mechanistically linked to a blockade of mTORC2-dependent glucose-to-lipid conversion rate. We also found that the basal levels of carnitine palmitoyltransferase 1A and lipid catabolism were elevated in HER2+/PIK3CAmut breast cells and were inhibited upon mTOR-KI treatment. A CPT1A inhibitor etomoxir mimicked MTI-31 action in selective downregulation of cellular lipid catabolism. Co-treatments with MTI-31 and etomoxir enhanced the suppression of cyclin D1, c-Myc and cell growth in HER2+/PIK3CAmut tumors. These new mechanistic findings provide a rationale for targeting mTORC1 and mTORC2 in HER2+/PIK3CAmut breast cancer.

mTOR Promotes Tissue Factor Expression and Activity in EGFR-Mutant Cancer

Front Oncol 2020 Aug 14;10:1615.PMID:32923403DOI:10.3389/fonc.2020.01615.

Mechanistic target of rapamycin (mTOR) signaling pathway mediates the function of oncogenic receptor tyrosine kinases (RTKs). We aimed to elucidate new role of mTOR in EGFR-mutant (EGFR-mut) non-small cell lung cancer (NSCLC) and glioblastoma (GBM) with a focus on tumor microenvironments. Here, we report a novel regulatory link between mTOR complexes (mTORCs) and tissue factor (TF), an initiator of tumor-derived thrombosis. TF is elevated in EGFR-mut NSCLC/GBM cell lines and tumors from patients with poor prognosis. Application of mTORC1/2 inhibitors (AZD8055, WYE-125132, MTI-31, and rapamycin) or genetic mTORC-depletion all reduced TF expression, which appeared to be differentially mediated depending on cellular context. In U87MG and HCC827 cells, mTORC1 exerted a dominant role via promoting TF mRNA transcription. In EGFR-TKI-resistant H1975 and PC9 cells, it was mTORC2 that played a major role in specific repression of lysosomal-targeted TF protein degradation. Successful inhibition of TF expression was demonstrated in AZD8055- or MTI-31-treated H1975 and U87MG tumors in mice, while a TF-targeted antibody antagonized TF activity without reducing TF protein. Both the mTOR- and TF-targeted therapy induced a multifaceted remodeling of tumor microenvironment reflecting not only a diminished hypercoagulopathy state (fibrin level) but also a reduced stromal fibrosis (collagen distribution), compromised vessel density and/or maturity (CD31 and/or α-SMA) as well as a substantially decreased infiltration of immune-suppressive M2-type tumor-associated macrophages (CD206/F4/80 ratio). Thus, our results have identified TF as a functional biomarker of mTOR. Downregulation of mTOR-TF axis activity likely contributes to the therapeutic mechanism of mTORC1/2- and TF-targeted agents in EGFR-mut advanced NSCLC and GBM.