Myelin Basic Protein (87-99)
(Synonyms: Val-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro-Arg-Thr-Pro ) 目录号 : GP10130An encephalitogenic peptide
Cas No.:118506-26-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
The basic protein is a major structural protein of the central nervous system myelin in which it constitutes 30% of the total protein.(1)
T lymphocyte cell lines selected with whole MBP typically recognize only 1-3 immunodominant epitopes (Offner et al., 1987, 1988; Trotter et al., 1987: Bourdctte et al., 1988; McCarron and McFarlin, 1988) and these immunodominant MBP epitopes frequently are cncephalitogenic (Vandenbark et al., 1985b, 1989; Hashim et al., 1991). Thus, the identification of immunodominant MBP epitopes is likely to provide an in vitro method of identifying unrecognized enccphalitogenic epitopes of MBP. (2)
Although the cause of multiple sclerosis (MS) is not known, a T cell-mediated autoimmune process has been postulated. Myelin basic protein (MBP) is a potential target antigen because it induces experimental allergic encephalomyelitis (EAE) in susceptible animals. Encephalitogenic epitopes of MBP differ among susceptible strains and correlate with the MHC class II genotype. (3)
References:
1. EYLAR, E. H., in L.Rowland (Editor), Immunologic disorders of the nervous system, Academic Press, New York, 1971, Chapter 5.
2. Jones et al (1992) the synthetic 87-99 peptide of myelin basic protein is encelphalitogenic in Buffalo rats. J.Neuroimmunol. 37 203
3. Fritz, R., and D.E. McFarlin . 1989. Encephalitogenic epitopes 10. Richert, J., E.D. Robinson, G.E . Deibler, R.E. Martenson, of myelin basic protein. Chem. Immunol. 46:101.
Cas No. | 118506-26-6 | SDF | |
别名 | Val-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro-Arg-Thr-Pro | ||
化学名 | Myelin Basic Protein (87-99) | ||
Canonical SMILES | CCC(C)C(C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)N1CCCC1C(=O)NC(CCCN=C(N)N)C(=O)NC(C(C)O)C(=O)N2CCCC2C(=O)O)NC(=O)C(CC(=O)N)NC(=O)C(CCCCN)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CC4=CC=CC=C4)NC(=O)C(CC5=CN=CN5)NC(=O)C(C(C)C)N | ||
分子式 | C74H114N20O17 | 分子量 | 1555.8 |
溶解度 | ≥ 77.8 mg/mL in DMSO, ≥ 15.97 mg/mL in EtOH with ultrasonic and warming, ≥ 50.7 mg/mL in Water | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 0.6428 mL | 3.2138 mL | 6.4276 mL |
5 mM | 0.1286 mL | 0.6428 mL | 1.2855 mL |
10 mM | 0.0643 mL | 0.3214 mL | 0.6428 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87-99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis
In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP72-85-induced EAE in Lewis rats. The Lys91 and Pro96 of MBP87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala96]MBP87-99, cyclo(87-99)[Ala91,96]MBP87-99 and cyclo(87-99)[Arg91, Ala96]MBP87-99, but not wild-type linear MBP87-99, strongly inhibited MBP72-85-induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg91, Ala96]MBP87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.
Altered peptide ligands of myelin basic protein ( MBP87-99 ) conjugated to reduced mannan modulate immune responses in mice
Mutations of peptides to generate altered peptide ligands, capable of switching immune responses from T helper 1 (Th1) to T helper 2 (Th2), are promising candidates for the immunotherapy of autoimmune diseases such as multiple sclerosis (MS). We synthesized two mutant peptides from myelin basic protein 87-99 (MBP(87-99)), an immunodominant peptide epitope identified in MS. Mutations of residues K(91) and P(96), known to be critical T-cell receptor (TCR) contact sites, resulted in the mutant peptides [R(91), A(96)]MBP(87-99) and [A(91), A(96)]MBP(87-99). Immunization of mice with these altered peptide ligands emulsified in complete Freund's adjuvant induced both interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) responses compared with only IFN-gamma responses induced to the native MBP(87-99) peptide. It was of interest that [R(91), A(96)]MBP(87-99) conjugated to reduced mannan induced 70% less IFN-gamma compared with the native MBP(87-99) peptide. However, [A(91), A(96)]MBP(87-99) conjugated to reduced mannan did not induce IFN-gamma-secreting T cells, but elicited very high levels of interleukin-4 (IL-4). Furthermore, antibodies generated to [A(91), A(96)]MBP(87-99) peptide conjugated to reduced mannan did not cross-react with the native MBP(87-99) peptide. By molecular modelling of the mutant peptides in complex with major histocompatibility complex (MHC) class II, I-A(s), novel interactions were noted. It is clear that the double-mutant peptide analogue [A(91), A(96)]MBP(87-99) conjugated to reduced mannan is able to divert immune responses from Th1 to Th2 and is a promising mutant peptide analogue for use in studies investigating potential treatments for MS.
Design and synthesis of a novel potent myelin basic protein epitope 87-99 cyclic analogue: enhanced stability and biological properties of mimics render them a potentially new class of immunomodulators
A cyclic analogue, [cyclo(87-99)MBP(87)(-)(99)], of the human immunodominant MBP(87)(-)(99) epitope, was designed based on ROESY/NMR distance information and modeling data for linear epitope 87-99, taking into account T-cell (Phe(89), Lys(91), Pro(96)) and HLA (His(88), Phe(90), Ile(93)) contact side-chain information. The cyclic analogue was found to induce experimental allergic encephalomyelitis (EAE), to bind HLA-DR4, and to increase CD4 T-cell line proliferation, like that of the conformationally related linear MBP(87)(-)(99) epitope peptide. The mutant cyclic peptides, the cyclo(91-99)[Ala(96)]MBP(87)(-)(99) and the cyclo(87-99)[Arg(91)Ala(96)]MBP(87)(-)(99), reported previously for suppressing, to a varying degree, autoimmune encephalomyelitis in a rat animal model, were found in this study to possess the following immunomodulatory properties: (i) they suppressed the proliferation of a CD4 T-cell line raised from a multiple sclerosis patient, (ii) they scored the best in vitro TH2/TH1 cytokine ratio in peripheral blood mononuclear cell cultures derived from 13 multiple sclerosis patients, inducing IL-10 selectively, and (iii) they bound to HLA-DR4, first to be reported for cyclic MBP peptides. In addition, cyclic peptides were found to be more stable to lysosomal enzymes and Cathepsin B, D, and H, compared to their linear counterparts. Taken together, these data render cyclic mimics as putative drugs for treating multiple sclerosis and potentially other Th1-mediated autoimmune diseases.
Treatment of experimental allergic encephalomyelitis (EAE) induced by guinea pig myelin basic protein epitope 72-85 with a human MBP(87-99) analogue and effects of cyclic peptides
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory and demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). In the present report, a linear analogue and a series of cyclic semi-mimetic peptides were designed and synthesized based on the human myelin basic protein (MBP(87-99)) epitope (Val87-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro-Arg-Thr-Pro90) and on Copolymer I (a mixture of random polymers of Ala, Gln, Lys and Tyr used to treat MS). These analogues were designed looking for suppressors of EAE induced by guinea pig MBP(72-85) epitope (Gln-Lys-Ser-Gln-Arg-Ser-Gln-Asp-Glu-Asn-Pro-Val) in Lewis rats. The linear analogue [Arg91,Ala96]MBP(87-99), in which Arg substitutes Lys91 and Ala substitutes Pro96, was found to be a strong inhibitor which when administered to Lewis rats together with the encephalitogenic agonist MBP(72-85) completely prevented the induction of EAE. In contrast, three N- and C-termini amide-linked cyclic semi-mimetic peptides, [cyclo-Phe-Arg-Asn-Ile-Val-Thr-Ala-Acp (1), cyclo-Phe-Ala-Arg-Gln-Acp (2), cyclo-Tyr-Ala-Lys-Gln-Acp (3)] as well as a Lys side chain and C-terminous cyclic semi mimetic peptide cyclo(Lys, Acp)-Phe-Lys-Asn-Ile-Val-Thr-Ala-Acp (4) which contain segments of MBP(87-99) or are constituted from immunophoric residues of copolymer 1, were ineffective in inducing or inhibiting EAE in Lewis rats. However co-injection of cyclic analogues with MBP(72-85) delayed the onset of EAE indicating a modulatory effect on the EAE activity of MBP(72-85). These findings suggest that molecule length, size of cyclic moiety and backbone conformation are important elements for immunogenic activity. Moreover blockade of MBP(72-85) induced EAE by the unrelated peptide [Arg91,Ala56]MBP(87-99) could indicate that the mechanism of inhibition is not due to binding competition but rather due to the delivery of a negative signal by the antagonist which overcomes the agonist response possibly through the activation of antigen specific regulatory T cells.
Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation, rendering cyclo(87-99)(Ala91,Ala96)MBP87-99 an important candidate drug for MS immunotherapy.