N-3-oxo-tetradecanoyl-L-Homoserine lactone
(Synonyms: N-(3-氧代十四烷酰基)-L-高丝氨酸内酯,3-oxo-C14-HSL; N-3-oxo-myristoyl-L-Homoserine lactone) 目录号 : GC442883-oxo-C14 quorum-sensing lactone
Cas No.:177158-19-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density. Controlling bacterial infections by quenching their quorum sensing systems is a promising field of study. The expression of specific target genes, such as transcriptional regulators belonging to the LuxIR family of proteins, is coordinated by the synthesis of diffusible acylhomoserine lactone (AHL) molecules. N-3-oxo-tetradecanoyl-L-homoserine lactone (3-oxo-C14-HSL) is a small diffusible signaling molecule involved in quorum sensing, thereby controlling gene expression and affecting cellular metabolism in bacteria.[1] [2] [3] It appears later than shorter acyl chain AHLs in developing biofilms [4] and, like other long chain 3-oxo-AHLs, stimulates the production of putisolvin, [5] which in turn, inhibits biofilm formation.
Reference:
[1]. Kuo, A., Blough, N.V., and Dunlap, P.V. Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. Journal of Bacteriology 176(24), 7558-7565 (1994).
[2]. Lithgow, J.K., Wilkinson, A., Hardman, A., et al. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Molecular Microbiology 37(1), 81-97 (2000).
[3]. McClean, K.H., Winson, M.K., Fish, L., et al. Quorum-sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703-3711 (1997).
[4]. Gomi, K., Kikuchi, T., Tokue, Y., et al. Mouse and human cell activation by N-dodecanoyl-DL-homoserine lactone, a Chromobacterium violaceum autoinducer. Infection and Immunity 74(12), 7029-7031 (2006).
[5]. Dubern, J.F., Lugtenberg, B.J.J., and Bloemberg, G.V. The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the Cyclic Lipopeptides Putisolvins I and II. Journal of Bacteriology 188(8), 2898-2906 (2006).
Cas No. | 177158-19-9 | SDF | |
别名 | N-(3-氧代十四烷酰基)-L-高丝氨酸内酯,3-oxo-C14-HSL; N-3-oxo-myristoyl-L-Homoserine lactone | ||
化学名 | 3-oxo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-tetradecanamide | ||
Canonical SMILES | CCCCCCCCCCCC(=O)CC(=O)N[C@H]1CCOC1=O | ||
分子式 | C18H31NO4 | 分子量 | 325.4 |
溶解度 | DMF: 20 mg/ml,DMSO: 20 mg/ml,Ethanol: 10 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.0731 mL | 15.3657 mL | 30.7314 mL |
5 mM | 0.6146 mL | 3.0731 mL | 6.1463 mL |
10 mM | 0.3073 mL | 1.5366 mL | 3.0731 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
AHL-Priming Protein 1 mediates N-3-oxo-tetradecanoyl-homoserine lactone priming in Arabidopsis
BMC Biol 2022 Dec 5;20(1):268.PMID:36464707DOI:10.1186/s12915-022-01464-3.
Background: N-3-oxo-tetradecanoyl-L-Homoserine lactone (oxo-C14-HSL) is one of the N-acyl homoserine lactones (AHL) that mediate quorum sensing in Gram-negative bacteria. In addition to bacterial communication, AHL are involved in interactions with eukaryotes. Short-chain AHL are easily taken up by plants and transported over long distances. They promote root elongation and growth. Plants typically do not uptake hydrophobic long sidechain AHL such as oxo-C14-HSL, although they prime plants for enhanced resistance to biotic and abiotic stress. Many studies have focused on priming effects of oxo-C14-HSL for enhanced plant resistance to stress. However, specific plant factors mediating oxo-C14-HSL responses in plants remain unexplored. Here, we identify the Arabidopsis protein ALI1 as a mediator of oxo-C14-HSL-induced priming in plants. Results: We compared oxo-C14-HSL-induced priming between wild-type Arabidopsis Col-0 and an oxo-C14-HSL insensitive mutant ali1. The function of the candidate protein ALI1 was assessed through biochemical, genetic, and physiological approaches to investigate if the loss of the ALI1 gene resulted in subsequent loss of AHL priming. Through different assays, including MAP kinase activity assay, gene expression and transcriptome analysis, and pathogenicity assays, we revealed a loss of AHL priming in ali1. This phenomenon was reverted by the reintroduction of ALI1 into ali1. We also investigated the interaction between ALI1 protein and oxo-C14-HSL using biochemical and biophysical assays. Although biophysical assays did not reveal an interaction between oxo-C14-HSL and ALI1, a pull-down assay and an indirect method employing biosensor E. coli LuxCDABE support such interaction. We expressed fluorescently tagged ALI1 in tobacco leaves to assess the localization of ALI1 and demonstrate that ALI1 colocalizes with the plasma membrane, tonoplast, and endoplasmic reticulum. Conclusions: These results suggest that the candidate protein ALI1 is indispensable for oxo-C14-HSL-dependent priming for enhanced resistance in Arabidopsis and that the ALI1 protein may interact with oxo-C14-HSL. Furthermore, ALI1 protein is localized in the cell periphery. Our findings advance the understanding of interactions between plants and bacteria and provide an avenue to explore desired outcomes such as enhanced stress resistance, which is useful for sustainable crop protection.
N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber
J Exp Bot 2020 Oct 22;71(20):6638-6654.PMID:32822478DOI:10.1093/jxb/eraa384.
N-acyl-homoserine lactones (AHLs), a well-described group of quorum sensing molecules, may modulate plant defense responses and plant growth. However, there is limited knowledge regarding the defense responses of non-model crops to AHLs and the mechanism of action responsible for the modulation of defense responses against microbial pathogens. In the present study, long-chain N-3-oxo-tetradecanoyl-L-Homoserine lactone (oxo-C14-HSL) was shown to have a distinct potential to prime cucumber for enhanced defense responses against the biotrophic oomycete pathogen Pseudoperonospora cubensis and the hemibiotrophic bacterium Pseudomonas syringae pv. lachrymans. We provide evidence that AHL-mediated enhanced defense against downy mildew disease is based on cell wall reinforcement by lignin and callose deposition, the activation of defense-related enzymes (peroxidase, β-1,3-glucanase, phenylalanine ammonia-lyase), and the accumulation of reactive oxygen species (hydrogen peroxide, superoxide) and phenolic compounds. Quantitative analysis of salicylic acid and jasmonic acid, and transcriptional analysis of several of genes associated with these phytohormones, revealed that defense priming with oxo-C14-HSL is commonly regulated by the salicylic acid signaling pathway. We also show that treatment with short- (N-hexanoyl-l-homoserine lactone) and medium-chain (N-3-oxo-decanoyl-l-homoserine lactone) AHLs promoted primary root elongation and modified root architecture, respectively, resulting in enhanced plant growth.
AHL-priming functions via oxylipin and salicylic acid
Front Plant Sci 2015 Jan 14;5:784.PMID:25642235DOI:10.3389/fpls.2014.00784.
Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-Homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection.
N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6
Plant Physiol 2011 Nov;157(3):1407-18.PMID:21940998DOI:10.1104/pp.111.180604.
Pathogenic and symbiotic bacteria rely on quorum sensing to coordinate the collective behavior during the interactions with their eukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as signals in such communication. Here we show that plants have evolved means to perceive AHLs and that the length of acyl moiety and the functional group at the γ position specify the plant's response. Root treatment with the N-3-oxo-tetradecanoyl-L-Homoserine lactone (oxo-C14-HSL) reinforced the systemic resistance to the obligate biotrophic fungi Golovinomyces orontii in Arabidopsis (Arabidopsis thaliana) and Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) plants. In addition, oxo-C14-HSL-treated Arabidopsis plants were more resistant toward the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato DC3000. Oxo-C14-HSL promoted a stronger activation of mitogen-activated protein kinases AtMPK3 and AtMPK6 when challenged with flg22, followed by a higher expression of the defense-related transcription factors WRKY22 and WRKY29, as well as the PATHOGENESIS-RELATED1 gene. In contrast to wild-type Arabidopsis and mpk3 mutant, the mpk6 mutant is compromised in the AHL effect, suggesting that AtMPK6 is required for AHL-induced resistance. Results of this study show that AHLs commonly produced in the rhizosphere are crucial factors in plant pathology and could be an agronomic issue whose full impact has to be elucidated in future analyses.
Combination of bacterial N-acyl homoserine lactones primes Arabidopsis defenses via jasmonate metabolism
Plant Physiol 2023 Mar 17;191(3):2027-2044.PMID:36649188DOI:10.1093/plphys/kiad017.
N-acyl homoserine lactones (AHLs) are important players in plant-bacteria interactions. Different AHL-producing bacteria can improve plant growth and resistance against plant pathogens. In nature, plants may host a variety of AHL-producing bacteria and frequently experience numerous AHLs at the same time. Therefore, a coordinated response to combined AHL molecules is necessary. The purpose of this study was to explore the mechanism of AHL-priming using combined AHL molecules including N-(3-oxo-hexanoyl)-L-homoserine lactone, N-3-oxo-octanoyl-L-homoserine lactone, N-3-oxo-dodecanoyl-L-homoserine lactone, and N-3-oxo-tetradecanoyl-L-Homoserine lactone and AHL-producing bacteria including Serratia plymuthica HRO-C48, Rhizobium etli CFN42, Burkholderia graminis DSM17151, and Ensifer meliloti (Sinorhizobium meliloti) Rm2011. We used transcriptome analysis, phytohormone measurements, as well as genetic and microbiological approaches to assess how the combination of structurally diverse AHL molecules influence Arabidopsis (Arabidopsis thaliana). Our findings revealed a particular response to a mixture of AHL molecules (AHL mix). Different expression patterns indicated that the reaction of plants exposed to AHL mix differs from that of plants exposed to single AHL molecules. In addition, different content of jasmonic acid (JA) and derivatives revealed that jasmonates play an important role in AHL mix-induced priming. The fast and stable decreased concentration of COOH-JA-Ile after challenge with the flagellin-derived peptide flg22 indicated that AHL mix modifies the metabolism of jasmonates. Study of various JA- and salicylic acid-related Arabidopsis mutants strengthened the notion that JA homeostasis is involved in AHL-priming. Understanding how the combination of AHLs primes plants for enhanced resistance has the potential to broaden our approaches in sustainable agriculture and will help to effectively protect plants against pathogens.