N-Arachidonoyl-L-Alanine
(Synonyms: NALA) 目录号 : GC44319An uncharacterized, natural arachidonoyl amino acid
Cas No.:401941-73-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Several different arachidonoyl amino acids, including N-arachidonoyl-L-alanine (NALA), have been isolated and characterized from bovine brain. The glycine congener (NAGly) was further characterized and found to suppress formalin-induced pain in rats. NALA may have activity at cannabinoid receptor and/or VR1, but has not been fully characterized to date.
Cas No. | 401941-73-9 | SDF | |
别名 | NALA | ||
Canonical SMILES | CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(N([C@@H](C)C(O)=O)[H])=O | ||
分子式 | C23H37NO3 | 分子量 | 375.6 |
溶解度 | DMF: 10 mg/ml,DMSO: 30 mg/ml,Ethanol: 50 mg/ml,PBS (pH 7.2): .25 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6624 mL | 13.312 mL | 26.6241 mL |
5 mM | 0.5325 mL | 2.6624 mL | 5.3248 mL |
10 mM | 0.2662 mL | 1.3312 mL | 2.6624 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
A novel N-arachidonoyl-l-alanine-catabolizing strain of Serratia marcescens for the bioremediation of Cd and Cr co-contamination
Environ Res 2023 Apr 1;222:115376.PMID:36736755DOI:10.1016/j.envres.2023.115376.
Cadmium (Cd) and chromium (Cr) are widespread contaminants with a high risk to the environment and humans. Herein we isolated a novel strain of Serratia marcescens, namely strain S27, from soil co-contaminated with Cd and Cr. This strain showed strong resistance to Cd as well as Cr. S27 cells demonstrated Cd adsorption rate of 45.8% and Cr reduction capacity of 84.4% under optimal growth conditions (i.e., 30 °C, 200 rpm, and pH 7.5). Microscopic characterization of S27 cells revealed the importance of the functional groups C-O-C, C-H-O, C-C, C-H, and -OH, and also indicated that Cr reduction occurred on bacterial cell membrane. Cd(II) and Cr(VI) bioaccumulation on S27 cell surface was mainly in the form of Cd(OH)2 and Cr2O3, respectively. Further, metabolomic analyses revealed that N-Arachidonoyl-L-Alanine was the key metabolite that promoted Cd and Cr complexation by S27; it primarily promotes γ-linolenic acid (GLA) metabolism, producing siderophores and coordinating with organic acids to enhance metal bioavailability. To summarize, our results suggest that S27 is promising for the bioremediation of environments contaminated with Cd and Cr in tropical regions.
5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells
BMC Cancer 2016 Jul 13;16:458.PMID:27411387DOI:10.1186/s12885-016-2499-3.
Background: Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-Arachidonoyl-L-Alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA. Methods and results: DHEA and NALA were found to effectively inhibit HNSCC cell proliferation. These anti-proliferative effects seemed to be mediated in a cannabinoid receptor-independent manner, since the antagonist of cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (VR1), two endocannabinoid receptors, did not reverse the ability of DHEA and NALA to induce cell death. Instead, we observed an increase in reactive oxygen species (ROS) production and a decrease of phosphorylated Akt as a result of DHEA and NALA treatment. Antioxidants efficiently reversed the inhibition of cell proliferation and the decrease of phosphorylated Akt induced by DHEA and NALA; inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and phosphorylated Akt. Interestingly, ROS production as a result of DHEA and NALA treatment was decreased by inhibition of 5-LO. Conclusions: From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it.
Discovery of donor age markers from bloodstain by LC-MS/MS using a metabolic approach
Int J Legal Med 2022 Jan;136(1):297-308.PMID:34218338DOI:10.1007/s00414-021-02640-w.
Bloodstains are frequently encountered at crime scenes and they provide important evidence about the incident, such as information about the victim or suspect and the time of death or other events. Efforts have been made to identify the age of the bloodstain's donor through genomic approaches, but there are some limitations, such as the availability of databases and the quality dependence of DNA. There is a need for the development of a tool that can obtain information at once from a small blood sample. The aim of this study is to identify bloodstain metabolite candidates that can be used to determine donor age. We prepared bloodstain samples and analyzed metabolites using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eighteen molecular features (MFs) were selected as candidates using volcano plots and multivariate analysis. Based on the MS/MS spectrum of the MFs, the following nine metabolites were identified from the METaboliteLINk database: Δ2-cis eicosenoic acid, ergothioneine, adenosine 5'-monophosphate, benzaldehyde, phenacylamine, myristic acid ethyl ester, p-coumaric acid, niacinamide, and N-Arachidonoyl-L-Alanine. These nine age markers at high or low abundances could be used to estimate the age of a bloodstain's donor. This study was the first to develop metabolite age markers that can be used to analyze crime scene bloodstains.