N,N',N''-Triacetylchitotriose
(Synonyms: N,N',N''-三乙酰壳三糖) 目录号 : GC44271An N-acetylglucosamine oligosaccharide
Cas No.:38864-21-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
N,N',N''-Triacetylchitotriose is a triose oligosaccharide derived from chitin, consisting of three N-acetylglucosamine units. It has been shown to scavenge reactive oxygen species and to protect DNA from oxidative damage.
Cas No. | 38864-21-0 | SDF | |
别名 | N,N',N''-三乙酰壳三糖 | ||
Canonical SMILES | O=C(C)N[C@@H]([C@@](O[C@@]([C@H](O)CO)([H])[C@H](O)[C@H](C=O)NC(C)=O)([H])O[C@@H]1CO)[C@@H](O)[C@@H]1O[C@]2([H])O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2NC(C)=O | ||
分子式 | C24H41N3O16 | 分子量 | 627.6 |
溶解度 | DMF: 20 mg/ml,DMSO: 15 mg/ml,PBS (pH 7.2): 3 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.5934 mL | 7.9669 mL | 15.9337 mL |
5 mM | 0.3187 mL | 1.5934 mL | 3.1867 mL |
10 mM | 0.1593 mL | 0.7967 mL | 1.5934 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Enzymatic hydrolysis of ionic liquid-extracted chitin
Carbohydr Polym 2018 Nov 1;199:228-235.PMID:30143125DOI:10.1016/j.carbpol.2018.07.014.
Chitin, one of Nature's most abundant biopolymers, can be obtained by either traditional chemical pulping or by extraction using the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The IL extraction and coagulation process provides access to a unique chitin, with an open hydrated gel-like structure. Here, enzymatic hydrolysis of this chitin hydrogel, dried shrimp shell, chitin extracted from shrimp shells using IL and then dried, and commercial chitin was carried out using chitinase from Streptomyces griseus. The enzymatic hydrolysis of shrimp shells resulted only in the monomer N-acetylglucosamine, while much higher amounts of the dimer (N,N'-diacetylchitobiose) compared to the monomer were detected when using all forms of 'pure' chitin. Interestingly, small amounts of the trimer (N,N',N''-Triacetylchitotriose) were also detected when the IL-chitin hydrogel was used as substrate. Altogether, our findings indicate that the product distribution and yield are highly dependent on the substrate selected for the reaction and its hydrated state.
Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis
Plant Physiol 2010 Jul;153(3):1345-61.PMID:20442276DOI:10.1104/pp.110.153882.
Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N',N''-Triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a beta-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects.
Suppression of lysozyme aggregation at alkaline pH by tri-N-acetylchitotriose
Biochim Biophys Acta 2009 Jun;1794(6):913-20.PMID:19336035DOI:10.1016/j.bbapap.2009.01.009.
Inhibiting protein misfolding and aggregation is imperative for treatment of amyloid diseases. In this regard small molecules which bind to and stabilize the monomeric protein have invited attention owing to their ability to significantly slow down or inhibit aggregation and amyloid formation. We have earlier shown that hen egg-white lysozyme (HEWL) spontaneously forms soluble oligomers at pH 12.2, which are later stabilized by intermolecular disulphide bonds, eventually resulting in amyloid fibrils. In this work, we show that overnight ( approximately 12 h) pre-incubation of HEWL with its competitive inhibitor, N,N',N''-Triacetylchitotriose (chitotriose) at neutral pH, impairs its aggregation and fibrillogenesis at pH 12.2. Unlike in control or N-Acetyl-D-glucosamine (NAG) pre-incubated samples, HEWL-chitotriose complex displayed i) reduced thioflavin T and ANS fluorescence, ii) small oligomers but no amyloid fibrils in AFM, iii) absence of large aggregates in SDS-PAGE and gel-filtration elutions, iv) marginally more helical content in CD spectra and v) >70% enzymatic activity after 24 h and approximately 16% activity after week long incubation at alkaline pH. It is likely that strong binding in the HEWL-chitotriose complex, in contrast to weakly bound HEWL-NAG complex, raises the activation energy barrier for protein misfolding and subsequent aggregation, thereby retarding the aggregation kinetics substantially. These results hold promise for the therapy of human lysozyme amyloidosis.