Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Calcium Channel>>N-type calcium channel blocker-1

N-type calcium channel blocker-1 Sale

目录号 : GC31178

N-typecalciumchannelblocker-1是有口服活性的麻醉剂,可阻断N型钙离子通道(N-typecalciumchannels),在IMR32试验中IC50值为0.7μM。

N-type calcium channel blocker-1 Chemical Structure

Cas No.:241499-17-2

规格 价格 库存 购买数量
2mg
¥3,900.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

N-type calcium channel blocker-1 is dissolved and diluted in DMSO. Different concentrations of the test compounds (N-type calcium channel blocker-1, et al.) are added to assay buffer containing approximately 3×106 loaded cells with 5 mM nitrendipine added to block l-type calcium channels. Samples are incubated for 10 min for then emission signals at 400 and 490 nm are acquired from each cuvette at 30°C for 50 s. At 20 s after the start of reading, cells are depolarized by the addition of a high K+ solution. Drug effects are expressed as a percentage of the amplitude of the K+- evoked change in intracellular calcium in drug treated compared to control experiments. PD-15130714 is run in parallel as a standard in each assay to compare the relative potencies determined. IC50 values of test compounds are calculated by fitting a four-parameter logistic function to the data using the least squares method[1].

Animal experiment:

Rats[1]Three Wistar rats receive a 5 mg/kg bolus intravenous dose of each compound (N-type calcium channel blocker-1, et al.) as a solution and serial plasma samples are collected at various times up to 24 hr postdose. Plasma samples are analyzed using direct protein precipitation with acetonitrile and the compound is quantitated by SciexLC/MS/MS system. A Betasil phenyl column (2.1 mm 12 cm) is used with a mobile phase of acetonitrile:0.1% acetic acid (70:30, v/v)[1].Mice[1] Male, CF-1 mice (26 and 30 g) are given a single, intraperitoneal injection of 0.6% acetic acid. This injection evoked abdominal constrictions, defined as discrete episodes of torso and hind limb stretching with or without neck arching, are counted and recorded for 5 min, beginning 7 min after acetic acid injection. The mice are individually housed in Nalgene cages and allowed to move freely during the experimental period (12 min). Animals are sacrificed by CO2 asphyxiation immediately after the 5-min observation period. Test compounds (N-type calcium channel blocker-1, et al.) are administered by intravenous or oral routes approximately 10 min prior to administering the acetic acid. The dose response relationship for antinociceptive effects during the acetic acid writhing test are assessed by plotting the incidence of abdominal constrictions against dose of the test compound. ED50 values are calculated using a four parameter logistic function[1].

References:

[1]. Hu LY, et al. The discovery of [1-(4-dimethylamino-benzyl)-piperidin-4-yl]-[4-(3,3-dimethylbutyl)-phen yl]-(3-methyl-but-2-enyl)-amine, an N-type Ca+2 channel blocker with oral activity for analgesia. Bioorg Med Chem. 2000 Jun;8(6):1203-12.

产品描述

N-type calcium channel blocker-1 is an orally active analgesic agent which shows high affinity to functionally block N-type calcium channels with an IC50 of 0.7 μM in the IMR32 assay.

N-type calcium channel blocker-1 shows good activities in the IMR32 assay (IC50=0.7 μM). N-type calcium channel blocker-1 is the most orally active N-type calcium channel blocker for analgesia found in a series of compounds[1].

N-type calcium channel blocker-1 shows good activities in the acetic acid anti-writhing model (ED50=4 mg/kg, iv). N-type calcium channel blocker-1 exhibits oral activity (ED50=12 mg/kg, po). A time course study of N-type calcium channel blocker-1 in the anti-writhing model indicates that the CF-1 mice have maximal effect at 120 min after oral dosing at 60 mg/kg. Further evaluation of N-type calcium channel blocker-1 demonstrates several important and advantageous features: the pharmacokinetic profile of N-type calcium channel blocker-1 is improved (Versus of 5.9 L/kg and CL of 26 mL/min/kg) and the logPn of 26 is favorable for CNS agent (logPn measured to be 3.20)[1].

[1]. Hu LY, et al. The discovery of [1-(4-dimethylamino-benzyl)-piperidin-4-yl]-[4-(3,3-dimethylbutyl)-phen yl]-(3-methyl-but-2-enyl)-amine, an N-type Ca+2 channel blocker with oral activity for analgesia. Bioorg Med Chem. 2000 Jun;8(6):1203-12.

Chemical Properties

Cas No. 241499-17-2 SDF
Canonical SMILES C/C(C)=C\CN(C1=CC=C(CCC(C)(C)C)C=C1)C2CCN(CC3=CC=C(N(C)C)C=C3)CC2
分子式 C31H47N3 分子量 461.73
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1658 mL 10.8288 mL 21.6577 mL
5 mM 0.4332 mL 2.1658 mL 4.3315 mL
10 mM 0.2166 mL 1.0829 mL 2.1658 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Heart failure-induced changes of voltage-gated Ca2+ channels and cell excitability in rat cardiac postganglionic neurons

Chronic heart failure (CHF) is characterized by decreased cardiac parasympathetic and increased cardiac sympathetic nerve activity. This autonomic imbalance increases the risk of arrhythmias and sudden death in patients with CHF. We hypothesized that the molecular and cellular alterations of cardiac postganglionic parasympathetic (CPP) neurons located in the intracardiac ganglia and sympathetic (CPS) neurons located in the stellate ganglia (SG) possibly link to the cardiac autonomic imbalance in CHF. Rat CHF was induced by left coronary artery ligation. Single-cell real-time PCR and immunofluorescent data showed that L (Ca(v)1.2 and Ca(v)1.3), P/Q (Ca(v)2.1), N (Ca(v)2.2), and R (Ca(v)2.3) types of Ca2+ channels were expressed in CPP and CPS neurons, but CHF decreased the mRNA and protein expression of only the N-type Ca2+ channels in CPP neurons, and it did not affect mRNA and protein expression of all Ca2+ channel subtypes in the CPS neurons. Patch-clamp recording confirmed that CHF reduced N-type Ca2+ currents and cell excitability in the CPP neurons and enhanced N-type Ca2+ currents and cell excitability in the CPS neurons. N-type Ca2+ channel blocker (1 μM ω-conotoxin GVIA) lowered Ca2+ currents and cell excitability in the CPP and CPS neurons from sham-operated and CHF rats. These results suggest that CHF reduces the N-type Ca2+ channel currents and cell excitability in the CPP neurons and enhances the N-type Ca2+ currents and cell excitability in the CPS neurons, which may contribute to the cardiac autonomic imbalance in CHF.

Alterations of calcium channels and cell excitability in intracardiac ganglion neurons from type 2 diabetic rats

Clinical study has demonstrated that patients with type 2 diabetes with attenuated arterial baroreflex have higher mortality rate compared with those without arterial baroreflex dysfunction. As a final pathway for the neural control of the cardiac function, functional changes of intracardiac ganglion (ICG) neurons might be involved in the attenuated arterial baroreflex in the type 2 diabetes mellitus (T2DM). Therefore, we measured the ICG neuron excitability and Ca(2+) channels in the sham and T2DM rats. T2DM was induced by a combination of both high-fat diet and low-dose streptozotocin (STZ, 30 mg/kg ip) injection. After 12-14 wk of the above treatment, the T2DM rats presented hyperglycemia, hyperlipidemia, and insulin resistance but no hyperinsulinemia, which closely mimicked the clinical features of the patients with T2DM. Data from immunofluorescence staining showed that L, N, P/Q, and R types of Ca(2+) channels were expressed in the ICG neurons, but only protein expression of N-type Ca(2+) channels was decreased in the ICG neurons from T2DM rats. Using whole cell patch-clamp technique, we found that T2DM significantly reduced the Ca(2+) currents and cell excitability in the ICG neurons. ω-Conotoxin GVIA (a specific N-type Ca(2+) channel blocker, 1 μM) lowered the Ca(2+) currents and cell excitability toward the same level in sham and T2DM rats. These results indicate that the decreased N-type Ca(2+) channels contribute to the suppressed ICG neuron excitability in T2DM rats. From this study, we think high-fat diet/STZ injection-induced T2DM might be an appropriate animal model to test the cellular and molecular mechanisms of cardiovascular autonomic dysfunction.

Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism

Previous studies have shown that nitric oxide (NO) inhibits carotid body sensory activity. To begin to understand the cellular mechanisms associated with the actions of NO in the carotid body, we monitored the effects of NO donors on the macroscopic Ca2+ current in glomus cells isolated from rabbit carotid bodies. Experiments were performed on freshly dissociated glomus cells from adult rabbit carotid bodies using the whole cell configuration of the patch-clamp technique. The NO donors sodium nitroprusside (SNP; 600 microM, n = 7) and spermine nitric oxide (SNO; 100 microM, n = 7) inhibited the Ca2+ current in glomus cells in a voltage-independent manner. These effects of NO donors were rapid in onset and peaked within 1 or 2 min. In contrast, the outward K+ current was unaffected by SNP (600 microM, n = 6), indicating that the inhibition by SNP was not a nonspecific membrane effect. 2-(4-carboxyphenyl)-4,4,5, 5-tetramethyl-imidazoline-1-oxyl-3-oxide (carboxy-PTIO; 500 microM), an NO scavenger, prevented inhibition of the Ca2+ current by SNP (n = 7), whereas neither superoxide dismutase (SOD; 2,000 U/ml, n = 4), a superoxide scavenger, nor sodium hydrosulfite (SHS; 1 mM, n = 7), a reducing agent, prevented inhibition of the Ca2+ current by SNP. However, SNP inhibition of the Ca2+ current was reversible in the presence of either SOD or SHS. These results suggest that NO itself inhibits Ca2+ current in a reversible manner and that subsequent formation of peroxynitrites results in irreversible inhibition. SNP inhibition of the Ca2+ current was not affected by 30 microM LY 83, 583 (n = 7) nor was it mimicked by 600 microM 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP; n = 6), suggesting that the effects of NO on the Ca2+ current are mediated, in part, via a cGMP-independent mechanism. N-ethylmaleimide (NEM; 2.5 mM, n = 6) prevented the inhibition of the Ca2+ current by SNP, indicating that SNP is acting via a modification of sulfhydryl groups on Ca2+ channel proteins. Norepinephrine (NE; 10 microM) further inhibited the Ca2+ current in the presence of NEM (n = 7), implying that NEM did not nonspecifically eliminate Ca2+ current modulation. Nisoldipine, an L-type Ca2+ channel blocker (2 microM, n = 6), prevented the inhibition of Ca2+ current by SNP, whereas omega-conotoxin GVIA, an N-type Ca2+ channel blocker (1 microM, n = 9), did not prevent the inhibition of Ca2+ current by SNP. These results demonstrate that NO inhibits L-type Ca2+ channels in adult rabbit glomus cells, in part, due to a modification of calcium channel proteins. The inhibition might provide one plausible mechanism for efferent inhibition of carotid body activity by NO.

Depolarization stimulates initial calcitonin gene-related peptide expression by embryonic sensory neurons in vitro

The neuropeptide calcitonin gene-related peptide (CGRP) is expressed by one-third of adult rat lumbar dorsal root ganglion (DRG) neurons, many of which mediate pain sensation or cause vasodilation. The factors that regulate the developmental expression of CGRP are poorly understood. Embryonic DRG neurons initially lack CGRP. When these neurons were stimulated in culture by serum or persistent 50 mM KCl application, the same percentage of CGRP-immunoreactive (CGRP-IR) neurons developed in vitro as was seen in the adult DRG in vivo. The addition of the L-type calcium channel blockers, 5 microM nifedipine or 10 microM verapamil, dramatically decreased the proportion of CGRP-IR neurons that developed, although the N-type calcium channel blocker, 2.5 microM omega-conotoxin, was less effective. By contrast, the sodium channel blocker 1 microM tetrodotoxin had no effect on CGRP expression after depolarization. Fura-2 ratiometric imaging demonstrated that mean intracellular free calcium levels increased from 70 to 135 nM with chronic depolarization, and the addition of nifedipine inhibited that increase. Only a subpopulation of neurons had elevated calcium concentrations during chronic depolarization, and they were correlated with CGRP expression. Key signal transduction pathways were tested pharmacologically for their role in CGRP expression after depolarization; the addition of the CaM kinase inhibitor KN-62 reduced the proportion of CGRP-IR neurons to basal levels. By contrast, protein kinase A and protein kinase C were not implicated in the depolarization-induced CGRP increases. These data suggest that depolarization and the subsequent Ca2+-based signal transduction mechanisms play important roles in the de novo expression of CGRP by specific embryonic DRG neurons.

Molecular mechanisms underlying the regulation of proenkephalin gene expression in cultured spinal cord cells

The regulation of proenkephalin (proENK) mRNA levels by cAMP and protein kinase C (PKC) pathways was studied in cultured rat spinal cord cells in the present study. Spinal cord cells were cultured from 14 day (E 14) embryos of Sprague-Dawley rats. After 7 days in vitro, the spinal cord cells were incubated with either forskolin (5 microM) or phorbol-13-myristate acetate (PMA; 2.5 microM) for 1, 3, 6, 9, 12 or 24 h and total RNA and proteins were isolated for Northern and Western blot analyses. The proENK mRNA level began to increase within an hour, then reached and remained at a peak 3-12 h after stimulation by both forskolin and PMA. The increased proENK mRNA level in forskolin-treated cells was slightly decreased 24 h after the stimulation, whereas the level of proENK mRNA returned to basal levels in PMA-treated cells. A Western blot assay revealed that the intracellular level of proENK protein was not changed by treatment with either forskolin or PMA. Pretreatment of cells with cycloheximide (a protein synthesis inhibitor; 10 microM) did not affect the forskolin- or PMA-induced increase of proENK mRNA. However, pretreatment with nimodipine (an L-type Ca2+ channel blocker; 2 microM), omega-conotoxin (an N-type Ca2+ channel blocker; 1 microM), calmidazolium (a calmodulin antagonist; 1 microM) or KN-62 (a Ca2+/calmodulin-dependent protein kinase II inhibitor; 5 microM) attenuated the forskolin- or PMA-induced increase of proENK mRNA levels. Dexamethasone (1 microM) did not affect the forskolin-induced increase of proENK mRNA levels. Our results suggest that the elevation of proENK mRNA levels in the spinal cord is regulated by both cAMP and PKC pathways. Calcium influx through both L- and N-type calcium channels, calmodulin and Ca2+/calmodulin-dependent protein kinase II appear to be involved in the increase of proENK mRNA levels induced by either forskolin or PMA. Furthermore, ongoing protein synthesis is not required for forskolin- or PMA-induced alterations in proENK mRNA.