Nervonoyl Ethanolamide
目录号 : GC44366An endocannabinoid
Cas No.:887405-21-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Nervonoyl ethanolamide is a member of the family of fatty N-acyl ethanolamines collectively called endocannabinoids. The relative importance of this ethanolamine metabolite has not been determined.
Cas No. | 887405-21-2 | SDF | |
Canonical SMILES | CCCCCCCC/C=C\CCCCCCCCCCCCCC(NCCO)=O | ||
分子式 | C26H51NO2 | 分子量 | 409.7 |
溶解度 | Ethanol: 5 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.4408 mL | 12.2041 mL | 24.4081 mL |
5 mM | 0.4882 mL | 2.4408 mL | 4.8816 mL |
10 mM | 0.2441 mL | 1.2204 mL | 2.4408 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Fatty acids and selected endocannabinoids content in cerebrospinal fluids from patients with neuroinfections
Metab Brain Dis 2019 Feb;34(1):331-339.PMID:30519835DOI:10.1007/s11011-018-0347-7.
Neuroinfections are a significant medical problem and can have serious health consequences for patients. Their outcome, if not fatal, can be associated with permanent residual deficits. Cerebrospinal fluid (CSF) examination is commonly used for meningitis confirmation. Fatty acids (FA) are precursors of lipid mediators with pharmacological activity. They actively modulate inflammation as well as contribute to its resolution. Therefore the aim of this study was to determine the FA and selected endocannabinoids (ECB) content in the CSF obtained from patients with bacterial (BM) and viral meningitis (VM) using chromatographic techniques. A significantly lower level of saturated FA was found in patients with BM and VM as compared to controls. There was a significantly higher concentration of long-chain monounsaturated FA and polyunsaturated n-6 FA in the CSF obtained from patients with neuroinfection. Moreover, a significant reduction of n-3 FA in CSF obtained from patients with BM and VM was demonstrated. The highest amount of ECB was detected in the CSF of patients with VM: eicosapentaenoyl ethanolamide (1.65 pg/mL), docosahexaenoyl ethanolamide (655.5 pg/mL) and Nervonoyl Ethanolamide (3.09 ng/mL). Results indicate the participation of long-chain monounsaturated and polyunsaturated FA and their derivatives in the inflammatory process and likely in the process of resolution of inflammation during neuroinfection. It seems that the determination of the FA and ECB profile in CSF may be a valuable biomarker of health and may allow the development of new pharmacological strategies, therapeutic goals and fatty acids supplementation necessary in the fight against inflammation of the central nervous system.
Docosahexaenoic acid attenuates in endocannabinoid synthesis in RAW 264.7 macrophages activated with benzo(a)pyrene and lipopolysaccharide
Toxicol Lett 2016 Sep 6;258:93-100.PMID:27329536DOI:10.1016/j.toxlet.2016.06.017.
Endocannabinoids are synthetized as a results of demand from membrane phospholipids. The formation and actions of these lipid mediators depend to a great extent on the prevalence of precursor fatty acid (FA), and can be influenced by diet or supplementation. The purpose of this study was to evaluate the interactive effects of lipopolysaccharide (LPS) and benzo(a)pyrene (BaP) in RAW 264.7 cells supplemented with docosahexaenoic acid (DHA). After LPS and/or BaP treatment in macrophages pre-incubated with DHA, a significant decrease in the amount of fatty acid was observed. The highest content of monounsaturated fatty acids was detected in RAW 264.7 cells co-treated with LPS and BaP. Significant interactions between LPS and BaP co-treatment in terms of endocannabinoid levels were observed in RAW 264.7 cells after DHA supplementation. The highest amount of endocannabinoids was detected in macrophages supplemented with DHA and co-treated with BaP and LPS: arachidonoyl ethanolamine AEA (5.9μg/mL), docosahexaenoyl ethanolamide DHEA (10.6μg/mL) and Nervonoyl Ethanolamide NEA (16.5μg/mL). The highest expression of cyclooxygenase (COX-2) and cannabinoid receptor 2 (CB2) was noted in macrophages supplemented with DHA and activated with LPS and BaP. Our data suggested a novel, CB2 receptor-dependent, environmental stress reaction in macrophages co-treated with LPS and BaP after supplementation with DHA. Despite the synergistic LPS and BaP action DHA potentiates the anti-inflammatory response in RAW 264.7 cells.